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1 Introduction

Since this work has its roots in one of the known string theories, namely type IIA Super-

string theory, let’s start by taking a look at the general features of such theories.

String theory is one of best the candidates for a quantum theory of gravity, it unifies

all known forces and particles (while suggesting the existence of many more) as different
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vibrational modes of an elementary string. These elementary strings can be open or closed

depending on the number of endpoints they have: open strings have two endpoints while

closed strings have none. They can interact with each other, open strings can join to form

closed strings and closed strings can split into open strings.

One of the interesting features of such theories is that they include general relativity at

long distances, this means that gravity is actually embedded in a quantum theory and it

is possible to take it into account also at short distances with a string theory description.

This would solve the long standing problem of fitting gravity into a quantum field theory

framework.

Another interesting feature of the theory is that the dimensionality of space-time does

not need to be fixed before working out the details of the model but it emerges from a

calculation. Contrary to our expectations, it turns out that the theory needs ten space-

time dimensions to be consistent; this gives rise to the need for a special mechanism to

bring down the number of dimensions to the observable four ones we are used to. One way

to achieve this goal has been to “compactify” the extra spatial dimensions, this means that

those dimensions are made so small we have no access to them through our experiments

and so we do not notice their existence.

Also, Supersymmetry is a basic ingredients in string theories which have the charac-

teristic to resemble reality. In fact, there exist bosonic string theories too, which lack

fermions and have a negative mass particle (the tachyon) in the spectrum, that are not

seen as a good description of our reality because of these deficiencies. Supersymmetry is

actually required for the mathematical consistency of the theory and it is one of the main

predictions that could be testable at accessible energies.

In this thesis we will mainly discuss the linearization procedure of the equations of

motion of type IIA supergravity, the low-energy limit of type IIA superstring theory.

In particular, our goal is to linearize those equations and express them in terms of the

fluctuations of the fields on a AdS7 ×M3 background space-time. Once we know those

equations, we could use them to determine the spectrum of masses of the fields of the

theory by expanding the fluctuations in harmonics on M3 and diagonalizing the linearized

equations. Then, with the help of the AdS/CFT correspondence, we could relate the mass

of the supergravity fields of AdS7 with the index of conformal operators in CFT6. In this

way, we can learn more about CFT6, which is the field theory describing the scalar fields

living on the M5-brane of M-theory. Since those scalar fields come from the coordinates

describing the position of the brane in the directions perpendicular to it, they provide us

a way to learn about the membrane itself.
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In order to carry on the linearization procedure succesfully, we need to introduce all

the necessary concepts needed to understand the topic thoroughly. For this reason, the

first part of the thesis is devoted to the introduction of those basic ideas which will be

useful later, to get to the specific case we will be dealing with; while the second part

focuses on the computations and the results obtained from the case of interest. The

second section (2) is used to present the basic concepts of string theory. We discuss the

case of the bosonic and super string in details; the action, the equations of motion and

the quantization are some of the topics we investigate.

Section 3 is concerned with the schematic treatment of supersymmetry and super-

gravity. This is useful because supersymmetry is a key concept in superstring theories.

Moreover, it is important to introduce the basics of supergravity because the case we’ll

be treating is exactly one kind of supergravity theory. In particular, we will study type

IIA supergravity in ten dimensions on a specific background.

The next section, number 4, is devoted to Kaluza-Klein supergravity theories. In

those kind of theories we employ the Kaluza-Klein idea of unifying the fields of a theory

by adding compact dimensions that are not usually accesible experimentally, to interpret

supergravity theories in dimensions greater than four. We start from a supergravity theory

and apply certain compactification schemes (configurations of the background space-time)

which make the expression of the fields take a peculiar form. For example, in the case

at hand we take the background ten dimensional space-time to be split into a seven

dimensional anti-de Sitter space-time and a three dimensional compact space. Given

this configuration for the background space, the expressions of the fields of the theory

were found by solving the equations of motion. These values were then taken to be the

ground-state values of the fields.

Also, the last section of the first part, section 5, goes into more details about the

theory we are studying and the mathematical techniques that were used to determine the

properties of interest. The relation between supergravity theories and their consecuences

on the geometry of space-time is briefly discussed. Furthermore, we give some highlights

of complex geometry and generalized complex geometry, which are needed to rewrite in

a more simple form the supersymmetry transformations of the theory and to make them

easier to solve. Lastly, the main results about type IIA supergravity obtained by using

those techniques are listed.

The second part of the thesis, which consists of section 6, deals with the computations

needed to linearize the equations of motion of the theory we study: type IIA supergravity

on an AdS7 × M3 background. In section 6, we have carried out the computation for
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the bosonic fields only and in particular we focused on the equations of motion for the

forms, the dilaton equation and the Einstein equation. We start with the equations of

motion of type IIA supergravity and we linearize them by expanding the fields around

their ground-state value to first order in the perturbations. Once we obtain the linearized

equations, we substitute the known expression of the background fields and we rewrite

the equations making the fact that we have a specific background space explicit. For

instance, the metric will have a certain form and the expressions of the fields will have

to agree with the symmetries of the background space. In this way we get the linearized

equations for our case.

2 String theory

2.1 Point particles and strings in curved space-time

2.1.1 General relativity in M dimensions

We consider the action of general relativity together with scalar fields and a cosmological

constant:

S =

∫
dMx
√
−g
(
R− 1

2
gµν∂µϕ

i∂νϕ
jMij − Λ

)
, (2.1)

where the expression ∂µϕ
i∂νϕ

jMij denotes the presence of several scalar fields.

The action has the following symmetries:

• diffeomorphism invariance;

• global symmetry ϕi → ϕi + ai;

• ϕi → Λi
lϕ
l so that Λ∗MΛ = M .

The equations of motion can be obtained by varying the action. For gµν we get the

Einstein equation:

δS

δgµν
= 0, (2.2)

Rµν −
1

2
gµνR + Λgµν = 0. (2.3)
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M = 1 dimension

If we specialize the general case of general relativity in M-dimension to the case of M = 1

we have:

x0 → τ , R→ 0 ,

Mij → ηµν , ϕi → Xµ (τ) , g → −e2 ;

where the metric only has one component.

The action now becomes:

S [e,X] =

∫
dτe

[
1

2

(
1

e2

)
∂Xµ

∂τ

∂Xν

∂τ
ηµν − Λ

]
=

1

2

∫
dτ

[
1

e

∂Xµ

∂τ

∂Xν

∂τ
ηµν − 2eΛ

]
. (2.4)

The equation of motion for e is:

δS

δe
= 0, (2.5)

− 1

e2
ẊµẊνηµν − 2Λ = 0 → e2 = −Ẋ

2

2Λ
; (2.6)

where we have defined: Ẋµ ≡ ∂Xµ

∂τ
and Ẋ2 = ẊµẊνηµν .

Substituting the expression for e which solves the equation of motion we get:

S [X] =
1

2

∫
dτ
[√
−2ΛẊ2 +

√
−2ΛẊ2

]
=

∫
dτ
√
−2ΛẊ2. (2.7)

Non-relativistic limit If we take the non-relativistic limit of the above expression,

which means we take:

Ẋ2 = −
(
dt
dτ

)2
+
(
d~x
dτ

)2
and ηµν =


−1 0 · · · 0

0 1
...

...
. . . 0

0 · · · 0 1

 ,

the action can be rewritten as:

S = −
√

2Λ

∫
dt

√
1−

(
d~x

dt

)2

≈ −
√

2Λ

∫
dt

(
1− 1

2

(
d~x

dt

)2
)

; (2.8)
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which is the action for a point particle with mass: m ≡
√

2Λ .

So, going back to the general case, we can rewrite the action in (2.7) :

S [X] = −m
∫
dτ
√
−Ẋ2. (2.9)

Now if the space-time is curved we substitute the flat metric ηµν with the general

metric Gµν and we may write the action as:

S [X] = −m
∫
dτ

√
−ẊµẊνGµν . (2.10)

As an aside, it is important to note that if we use the diffeomorphism invariance

τ ′ = τ ′ (τ) , we can impose the gauge fixing e = 1 and looking at the equation of motion

for e we get the constraint: P 2 +m2 = 0

M = 2 dimensions (
x0, x1

)
→ (τ, σ) , Mij → ηµν ,

ϕi → Xµ (τ, σ) , gmn → hmn .

The most general expression we can write in this case for the Riemann tensor is:

Rmnpq = α (hmphnq − hmqhnp) .

From this expression we can compute the form of the Ricci tensor Rnq and the curva-

ture scalar R:

Rnq = hmpRmnpq = α (2hnq − hnq) = αhnq ,

R = hnqRnq = 2α .

So, the Einstein tensor Gnq = Rnq − 1
2
hnqR = 0 vanishes.

The Einstein equation becomes

Λhnq = Tnq, (2.11)
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where the energy-momentum tensor Tnq is:

Tnq = ηµν

(
∂nX

µ∂qX
ν − 1

2
hnqh

mn∂mX
µ∂nX

ν

)
. (2.12)

Taking the trace of the energy-momentum tensor we find:

T nn = hnqTnq = 0. (2.13)

This means that if we take the trace of the Einstein equation in (2.11) we discover

that:

hnqΛhnq = 0 → Λ = 0. (2.14)

The cosmological constant must be null in this case.

The action will then be:

S =

∫
dτdσ

√
−h
(
R− 1

2
hmn∂mX

µ∂nX
νηµν

)
. (2.15)

We can define: χ ≡
∫
dτdσ

√
−hR ,

it is a number so it does not contribute to the action. More specifically, it is called

the Euler-number and it is related to the genus of the surface spanned by (τ, σ).

The final form of the action is:

S = −
∫
dτdσ

√
−h
(

1

2
hmn∂mX

µ∂nX
νηµν

)
, (2.16)

and it is called the Polyakov action.

2.2 Bosonic string

2.2.1 Polyakov and Nambu-Goto action

Let’s study here the properties of the Polyakov action:

S = −1

2

∫
d2σ
√
−h
(
hαβ∂αX

µ∂βX
νηµν

)
. (2.17)

The equation of motion for hαβ is:
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∂αX · ∂βX −
1

2
hαβh

γδ∂γX · ∂δX = 0 ; (2.18)

which can be manipulated a bit in order to eliminate h from the action. For example,

we rewrite it as:

∂αX · ∂βX =
1

2
hαβh

γδ∂γX · ∂δX

taking the determinant we get:

−det (∂αX · ∂βX) = −det (hαβ)

(
1

2
hγδ∂γX · ∂δX

)2

;

where hγδ∂γX · ∂δX is a scalar, so when we take the determinant of the 2× 2 matrix

hαβ this factor will appear twice. We define: Gαβ ≡ (∂αX · ∂βX).

Now, taking the square root:

√
−det (Gαβ) =

√
−h
(

1

2
hγδ∂γX · ∂δX

)
. (2.19)

Substituting this expression into the action we obtain what is called the Nambu-Goto

action:

S [X] = −T
∫
d2σ
√
−det (Gαβ) , (2.20)

where T = 1
2πα′

is the string tension.

Symmetries

We list here the symmetry properties of S:

• diffeomorphism invariance (coordinate reparametrization): (τ, σ)→ (τ ′, σ′) = (τ ′ (τ, σ) , σ′ (τ, σ))

;

• Weyl invariance: hαβ → eφ(σ,τ)hαβ , δXµ = 0 ;

• global symmetry: δXµ (τ, σ) = aµνX
ν + bµ , δhαβ = 0 .

We can use these symmetries to fix the metric to a Minkowski metric:
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hαβ =

(
h00 h01

h10 h11

)
=

(
−1 0

0 1

)
.

If we choose this gauge fixing for hαβ we can rewrite the Polyakov action as:

S [X] = −T
2

∫
d2σ

(
Ẋ2 −X ′2

)
, (2.21)

where Ẋµ ≡ ∂Xµ

∂τ
, X ′µ ≡ ∂Xµ

∂σ
.

2.2.2 Equation of motion

By setting the variation of the action to zero we look for the field equations:

δS [X] = −T
2

∫
d2σ

(
2ẊδẊ − 2X ′δX ′

)
= −T

∫
d2σ

[
−ẌδX + ∂τ

(
ẊδẊ

)
+X ′′δX − ∂σ (X ′δX ′)

]
=

= T

∫
d2σ

[(
Ẍ −X ′′

)
δX − ∂τ

(
ẊδX

)
+ ∂σ (X ′δX)

]
= 0 , (2.22)

where −∂τ
(
ẊδẊ

)
+ ∂σ (X ′δX ′) are boundary terms. The field equations are:

(
Ẍµ −X ′′µ

)
= 0 . (2.23)

Or, written differently

(
∂2
τ − ∂2

σ

)
Xµ (τ, σ) = 0 . (2.24)

From the gauge fixing we have chosen, we get some constraints on the equation of

motion:

Tαβ = 0 , (2.25)

T00 = T11 = 0 T10 = T01 = 0 ,

X ′ · Ẋ = 0

1
2

(
Ẋ2 +X ′2

)
= 0 .

(2.26)
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2.2.3 Boundary conditions

We have two boundary terms two deal with:

1.
∫
dσ
∫∞
−∞ dτ∂τ

(
ẊδX

)
→ 0 , by assumption we take it to vanish at infinity;

2.
∫
dτ
∫ π

0
dσ∂σ (X ′δX) =

∫
dτ [X ′δX|σ=π − X ′δX|σ=0] = 0 .

Let’s see what are the possible conditions we can impose on the two terms.

For the case of open strings, whose endpoints can end at different space-time points,

we can have:

• Neumann boundary condition: X ′µ (τ, π) = X ′µ (τ, 0) = 0; the component of the

momentum normal to the boundary of the world-sheet vanishes;

• Dirichlet boundary condition:

Xµ (τ, π) = xπ

Xµ (τ, 0) = x0

, where x0 and xπ are constants;

the positions of the two string ends are fixed so that δXµ = 0 .

For closed strings the mapping is periodic (Xµ (τ, σ) = Xµ (τ, σ + π)) , so the boundary

term in the integral vanishes automatically:

• Periodic: Xµ (τ, π) = Xµ (τ, 0) .

2.2.4 Light-cone coordinates

We present here the definitions of light cone coordinates because they are widely used in

rewriting several equations.

We define world-sheet light cone coordinates:

σ± ≡ τ ± σ . (2.27)

And then we get:

∂± =
1

2
(∂τ ± ∂σ) . (2.28)

The two-dimensional flat metric becomes(
η++ η+−

η−+ η−−

)
= −1

2

(
0 1

1 0

)
. (2.29)
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In these coordinates the wave equation for Xµ is now

∂+∂−X
µ = 0 . (2.30)

The most general solution can be written as Xµ (σ+, σ−) = Xµ
R (σ) +Xµ

L (σ+) .

From this expression we discover that ∂−X
µ = ∂−X

µ
R and ∂+X

µ = ∂+X
µ
R .

These relations, combined with closed string boundary conditionXµ (τ, σ) = Xµ (τ, σ + π)

, tell us that both Xµ
L and Xµ

R must be periodic, not just their sum Xµ.

Since they are periodic, we can expand them in Fourier modes:

∂−X
µ
R = ls

+∞∑
m=−n

αµme
−2miσ− , (2.31)

∂+X
µ
L = ls

+∞∑
m=−n

α̃µme
−2miσ+ . (2.32)

Integrating we obtain:

Xµ
R = xµR + lsα0σ− +

ils
2

+∞∑
m 6=0

αµm
m
e−2miσ− , (2.33)

Xµ
L = xµL + lsα̃0σ+ +

ils
2

+∞∑
m 6=0

α̃µm
m
e−2miσ+ , (2.34)

Xµ = (xµR + xµL) + ls
(

˜α0σ− + α0σ+

)
+
ils
2

+∞∑
m 6=0

1

m

(
αµme

−2miσ− + α̃µme
−2miσ+

)
. (2.35)

We also impose that Xµ is real: (αµm)∗ = αµ−m .

We now rewrite the constraints (2.26) in light-cone coordinates. They give

(∂+X
µ
L)2 = 0 (∂−X

µ
R)2 = 0 (2.36)

For closed strings, they are periodic in σ so we can expand them in Fourier modes:(∂+X
µ
L)2 = 2l2s

∑+∞
m=−∞ L̃me

−2imσ+

(∂−X
µ
R)2 = 2l2s

∑+∞
m=−∞ Lme

−2imσ− .
(2.37)
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To find the expression for Lm and L̃m, which are called Virasoro operators, we can

compare the above expressions with the definition of Xµ. Eventually, one gets:L̃m = 1
2

∑+∞
n=−∞ α̃

µ
nα̃

ν
m−n

Ln = 1
2

∑+∞
n=−∞ α

µ
nα

ν
m−n .

(2.38)

In terms of the Virasoro operators, the constraints become:

Ln = L̃m = 0 . (2.39)

If we consider the zero mode we have: L̃0 = L0 = 0 .

The expression of the zero mode is:

L0 =
1

2
α2

0 +
1

2

∑
n 6=0

αµnα
ν
−n , (2.40)

we can rewrite the sum as: 1
2

∑+∞
n=−∞ α

µ
nα

ν
−n =

∑
n>0 α

µ
nα

ν
−n .

We also have α2
0 =

P 2
0

(2πlsT )2 = −M2

(2πlsT )2 .

So, from the constraint L0 = 0 we find the following identity:

∑
m>0

αµmα
ν
−m =

1

2

M2

(2πlsT )2 .

And from the definition of L0 we get:

4
∑
m>0

αµmα
ν
−m = α′M2 . (2.41)

Now, we can write a formula for the mass of the closed string:

α′M2
closed = 4

∑
m>0

αµmα
ν
−m + 4

∑
m>0

α̃µmα̃
ν
−m . (2.42)

2.2.5 Quantization

Canonical quantization

To carry on the procedure of canonical quantization, we need to compute some classical

quantities. Starting from the expression of the Lagrangian:
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L = T
(
Ẋ2 −X ′2

)
, (2.43)

we compute the momentum conjugate to Xµ, Πµ:

Πµ =
δL
δẊµ

. (2.44)

So we have the classical Poisson brackets:

[Πµ (σ, τ) ,Πν (σ′, τ)]P.B. = [Xµ (σ, τ) , Xν (σ′, τ)]P.B. = 0 , (2.45)

[Πµ (σ, τ) , Xν (σ′, τ)]P.B. = ηµνδ (σ − σ′) ; (2.46)

where δ (σ − σ′) =
∑

m>0 e
2im(σ−σ′) .

If we substitute the mode expansions of the closed string into the classical Poisson

brackets, we get the brackets for the modes:

[αµm, α
ν
n]P.B. = [α̃µm, α̃

ν
n]P.B. = 0 , (2.47)

[αµm, α̃
ν
n]P.B. = imηµνδm+n,0 . (2.48)

And for the Virasoro operators we find:

[Lm, Ln]P.B. = i (m− n)Lm+n . (2.49)

We can now quantize the theory by replacing Poisson brackets with commutators

[. . . , . . .]P.B. → i [. . . , . . .] . (2.50)

We rewrite the modes as: aµm = 1√
m
αµm

ãµm = 1√
m
α̃µm

, (2.51)

having:

(aµm)† = aµ−m . (2.52)
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The algebra of these new operators is:

[aµm, a
ν
n] = [ãµm, ã

ν
n] = 0 , (2.53)

[aµm, ã
ν
n]P.B. = ηµνδm+n,0 . (2.54)

It is easy to see that the algebra satisfied by these new operators is essentially that

of raising and lowering operators. So, we can interpret them as creation and annihilation

operators.

However, a problem arises when considering states created by an odd number of zero

mode operators |ϕ〉 = a0†
1 a

0†
2 . . . a0†

odd |0〉 because when we consider their norm 〈ϕ |ϕ〉 (using

the commutators to evaluate the action of the operators acting on the vacuum) we get

a negative result. An infinite tower of negative norm states arises in this way. We can

tackle this problem by using the infinite number of constraints on Ln and L̃n , which we

write as:

Ln |ϕ〉 = 0 ; (2.55)

with L†n = L−n we also have:

〈ϕ|L−n = 0 . (2.56)

The same will be true for L̃n .

Since in canonical quantization the quantum operators are derived from the normal

ordered classical operators, we have another issue regarding the ordering of Virasoro

operators. Indeed, for the zero mode L0 and L̃0 we have an order ambiguity:

L0 =
1

2

+∞∑
n=−∞

: αµnα
ν
−n : . (2.57)

To normal order the operator we will be forced to introduce a constant a so that:

(L0 − a) |ϕ〉 = 0 , (2.58)

the same applies to L̃0 .

Furthermore, we have to impose the so called level matching condition:
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(
L0 − L̃0

)
|ϕ〉 = 0 . (2.59)

Light-cone quantization

In light-cone coordinates we rearrange the components of the scalar fields:

Xµ =
(
X0, X1, . . . XD−1

)
→
(
X+, X−, X1, . . . XD−2

)
,

where X± = 1√
2

(
X0 ±XD−1

)
.

The space-time metric becomes

η =


0 −1

−1 0

1D−2×D−2

 .

So, for the most general expression of X+ we can write:

X+ (τ, σ) = x+ + l2sp
+

(
τ +

ils
p+

∑ 1

m
α+
me
−imτcos (mσ)

)
. (2.60)

We now use conformal invariance of the action to make the reparametrizationσ+ → σ̃+ = f+ (σ+) = τ̃ + σ̃+

σ− → σ̃− = f− (σ−) = τ̃ − σ̃−
, (2.61)

where τ̃ = 1
2

(f+ (σ+) + f− (σ−)) and it must hold: ∂+∂−τ̃ = 0 .

Any transformation which gives a τ̃ that satisfies the above equation is a symmetry

of the theory.

The oscillator modes in (2.60) do satisfy that equation, so we set:

τ̃ = τ +
ils
p+

∑ 1

m
α+
me
−imτcos (mσ) ; (2.62)

which gives:

X+ = x+ + l2sp
+τ̃ , (2.63)
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Ẋ+ = ∂τ̃X
+ , (2.64)

X+′ = ∂σX
+ = 0 . (2.65)

We rewrite the first constraint in (2.26):

Ẋ ·X ′ = 0→ −Ẋ+ ·X−′ − Ẋ− ·X+ + ~̇X · ~X ′ = 0 ,

−
(
l2sp

+
)
X−

′
+ ~̇X · ~X ′ = 0 ,

X−
′
=

1

(l2sp
+)

D−2∑
i=1

Ẋ iX i′ . (2.66)

We also have that X−
′
= −ls

∑
m 6=0 α

−
me
−imτsin (mσ) . So we can find the expression

on the modes α−m by setting τ̃ = 0 and integrating. We obtain:

α−n =
1

lsp+

(
1

2

∞∑
m=−∞

D−2∑
i=1

αin−mα
i
m

)
. (2.67)

In this way we have expressed the ± quantities in terms of the D−2 transverse vector

ones i.

All the states of the theory (the Hilbert space) can be constructed with the transverse

modes αi only: |ϕ〉 = ai1†m1
ai2†m2

. . . air†mr |0〉 .

In this way negative-norm states do not arise! The downside of this approach is that

Lorentz invariance is not manifest (as i goes from 1 to D − 2) and we must check it

explicitely.

Open string spectrum Let’s take a look at the spectrum of the theory. In order to

do that, we have to find the expression for the mass of the states.

First, we compute the following expression: 2p+p− =
∑D−2

i=1 pipi +
∑∞

m=−∞
∑D−2

i=1 :

αi−mα
i
m : −a , where a is a constant to be determined.

The mass is then given by:

α′M2 = −p2 = 2p+p− −
D−2∑
i=1

pipi =
∞∑

m=−∞

D−2∑
i=1

: αi−mα
i
m : −a . (2.68)
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We can define the number operator N :

N ≡
∞∑

m=−∞

D−2∑
i=1

αi−mα
i
m =

∞∑
m=−∞

D−2∑
i=1

m
(
ai†ma

i
m

)
; (2.69)

and rewrite the mass squared operator as:

α′M2 = N − a . (2.70)

The spectrum is then:

• N = 0: α′M2 |0〉 = −a |0〉 ;

• N = 1: α′M2ai†1 |0〉 = 1− a |ϕ〉i

It is a vector representation with D − 2 degrees of freedom which means it is a

massless vector. So: 1− a = 0→ a = 1 ;

• N = 2: α′M2ai†2 |0〉 = 2− a |0〉 and α′M2ai†1 a
j†
1 |0〉 = 2− a |0〉 .

After having determined the constant a, we realize that we have an issue: the spectrum

contains a tachyon, a particle with negative mass!

Closed string spectrum For the closed string the treatment is similar, but here we

have two separate copies of the oscillator modes that gives different operators.

We have two number operators N and Ñ :

N =
∞∑

m=−∞

D−2∑
i=1

m
(
ai†ma

i
m

)
, (2.71)

Ñ =
∞∑

m=−∞

D−2∑
i=1

m
(
ãi†mã

i
m

)
. (2.72)

The mass operator is then given by

α′M2 = N + Ñ − a . (2.73)

We have the following spectrum (with a = 1) :

• N + Ñ = 0: α′M2 = −1 ,

tachyon;
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• N + Ñ = 1: α′M2 = 0 ,

graviton, 2-form, dilaton.

2.3 Superstring

So far we have only been talking about the bosonic string theory but this can’t be a

satisfactory model of nature as it lacks fermions. If we want to include fermions in string

theory we also need supersymmetry. We will only consider the Ramond-Neveu-Schwarz

(RNS) formalism which is based on world-sheet supersymmetry. In the RNS formalism

the fermionic field ψµ (σ, τ) is introduced, this is the superpartner of the Xµ (σ, τ) field.

The field ψµ is a two component spinor on the world-sheet and a vector under Lorentz

transformations of the background space-time.

2.3.1 Superstring action

The complete action is given by the one for D massless bosons plus the standard Dirac

action for D massless fermions:

S = − 1

2πα′

∫
d2σ

(
∂αXµ∂

αXµ + ψ̄µρα∂αψµ
)

α = 0, 1 , (2.74)

ψ̄ = iψ†ρ0 is the Dirac conjugate of a spinor and ρα represent the 2-dimensional Dirac

matrices satisfying:

{
ρα, ρβ

}
= 2ηαβ . (2.75)

For example, one possible choice for these matrices is:

ρ0 =

(
0 −1

1 0

)
ρ1 =

(
0 1

1 0

)
. (2.76)

We can impose Majorana or Weyl conditions or both of them to the spinors.

• Majorana condition: ψ† = ψ ,

the spinor has real components;

• Weyl condition: ρψ = ±ψ where ρ = ρ0ρ1 ,

which means we have two possible chiralities for the spinor.
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Light-cone coordinates

Using light-cone coordinates σ± = τ ± σ , the fermionic fields take the form:

ψµ =

(
ψµ−
ψµ+

)
, (2.77)

where ± subscripts indicate the chirality of the spinor component. The fermionic part

of the action in light-cone coordinates is:

Sψ =
1

2πα′

∫
dσ+dσ− [ψ+ · (∂−ψ+) + ψ− · (∂+ψ−)] . (2.78)

World-sheet supersymmetry

The complete action is invariant under the supersymmetry transformations, which mix

the bosonic and fermionic fields:

δXµ = ε̄ψµ , (2.79)

δψµ = ρα∂αX
µε , (2.80)

where ε is a constant (when we consider global supersymmetry transformaztions) in-

finitesimal Majorana spinor with two components:

ε =

(
ε−

ε+

)
. (2.81)

2.3.2 Equations of motion

In order to find the equations of motions for the fermioni fields we vary the action and

set its variation to zero:

δSψ = 0 → δLψ = 0 .

The equations of motions for the fermionic fields, together with the ones of the bosonic

fields Xµ, are the equations of motion of superstring theory. In terms of the two spinor

components, using light-cone coordinates, the equations of motion for the fermionic fields

are:
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δSψ =

∫
d2σ [δψ+ · (∂−ψ+) + ψ+ · δ (∂−ψ+) + ψ− · δ (∂+ψ−) + δψ− · (∂+ψ−) +] =

=

∫
d2σ [2δψ+ · (∂−ψ+) + 2δψ− · (∂+ψ−) + ∂− (ψ+ · δψ+) + ∂+ (ψ− · δψ−)] , (2.82)

where we have integrated by parts: ψ+ · ∂−δψ+ = −∂−ψ+ · δψ+ + ∂− (ψ+ · δψ+) .

If we take the total derivative terms to vanish (we will look at suitable boundary

conditions later), we obtain the following Dirac equations as equations of motion:

∂+ψ− = 0 , ∂−ψ+ = 0 , (2.83)

which describe right-moving and left-moving waves.

2.3.3 Boundary conditions

The boundary terms are:∫ ∞
−∞

dτ

∫ ∞
−∞

dσ − ∂σ (ψ+ · δψ+) + ∂σ (ψ− · δψ−) =

=

∫ ∞
−∞

dτ − (ψ+ · δψ+|σ=π − ψ− · δψ−|σ=π) + (ψ+ · δψ+|σ=0 − ψ− · δψ−|σ=0) , (2.84)

where the derivatives with respect to τ vanish because the fields vanish at ±∞.

The two terms must vanish independently and we have two possible boundary condi-

tions.

For open strings the two terms must vanish independetly for each endpoint of the

string. This happens when ψ+ = ±ψ− . Since the relative sign is a matter of convention,

at one end we are free to impose:

ψµ+|σ=0 = ψµ−|σ=0 . (2.85)

At the other end we now have two possibilities:

• Ramond boundary condition

ψµ+|σ=π = ψµ−|σ=π ; (2.86)
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which gives the mode expansions for left and right movers:

ψµ− (σ.τ) =
1√
2

∑
r∈Z+ 1

2

bµr e
−ir(τ−σ) , (2.87)

ψµ+ (σ.τ) =
1√
2

∑
r∈Z+ 1

2

bµr e
−ir(τ+σ) . (2.88)

• Neveu-Schwarz boundary condition

ψµ+|σ=π = −ψµ−|σ=π . (2.89)

With mode expansions:

ψµ− (σ.τ) =
1√
2

∑
n∈Z

dµne
−inσ− , (2.90)

ψµ+ (σ.τ) =
1√
2

∑
n∈Z

dµne
−inσ+ . (2.91)

The Majorana condition also requires:

dµ−n = dµ†n , bµ−r = bµ†r . (2.92)

For closed strings two possible periodicity conditions make the boundary term van-

ish:

ψ± (σ, τ) = ±ψ± (σ + π, τ) ; (2.93)

where the upper sign stand for periodic boundary condition and the lower sign for

antiperiodic boundary conditions.

Which give the mode expansions

ψµ− (σ.τ) =
∑
r∈Z+ 1

2

bµr e
−2ir(τ−σ) , ψµ+ (σ.τ) =

∑
r∈Z+ 1

2

bµr e
−2ir(τ+σ) , (2.94)

ψµ− (σ.τ) =
∑
n∈Z

dµne
−2in(τ−σ) , ψµ+ (σ.τ) =

∑
n∈Z

dµne
−2in(τ+σ) . (2.95)
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We can impose periodicity (Ramond) or antiperiodicity (Neveu-Schwarz) boundary

conditions for right movers and left movers independently. Therefore, we have four pos-

sible choices on how to combine boundary conditions: R-R, R-NS, NS-R, NS-NS.

Actually, there are only two possible inequivalent theories combining the different

sectors and they are classified by the choice of the R vacuum state. In each of the four

secors we have 64 states.

IIB

R-R: |+〉R ⊗ |+〉R ,

gives a scalar λ, a two-form gauge field Aµν and a four-form gauge field Dµνρσ whose

field strength is self dual;

NS-R: b̃i− 1
2

|0〉NS ⊗ |+〉R ;

R-NS: |+〉R ⊗ bi− 1
2

|0〉NS ,

the two mixed sectors together give two spin 3
2

fermions ψ i
+ µ and two spin 1

2
fermions

χi+ ;

NS-NS: b̃i− 1
2

|0〉NS ⊗ bi− 1
2

|0〉NS ,

gives a scalar φ, an antisymmetric two-form gauge field Bµν and a symmetric trace-

less rank-two tensor Gµν ;

IIA

R-R: |−〉R ⊗ |+〉R ,

gives a one-form gauge field Aµ and a three-form gauge field Aµνρ ;

NS-R: b̃i− 1
2

|0〉NS ⊗ |+〉R ;

R-NS: |−〉R ⊗ bi− 1
2

|0〉NS ,

the two mixed sectors together give two spin 3
2

fermions ψ i
+ µ, ψ i

− µ and two spin 1
2

fermions χi+ χi+, χi−;

NS-NS: b̃i− 1
2

|0〉NS ⊗ bi− 1
2

|0〉NS,

gives a scalar φ, an antisymmetric two-form gauge field Bµν and a symmetric trace-

less rank-two tensor Gµν ;
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2.3.4 Canonical quantization

To quantize the theory we need to know the canonical anticommutation relations for the

fermionic world-sheet fields ψµ in addition to the commutation relations for the bosonic

fields Xµ. They are:

{ψµA (σ, τ) , ψνB (σ′, τ)} = ηµνδABδ (σ − σ′) . (2.96)

Now, substituting the mode expansions for the fermionic fields we find:

{bµr , bνs} = ηµνδr+s,0 , (2.97)

for the NS sector;

{dµm, dνn} = ηµνδm+n,0 , (2.98)

for the R sector.

If we consider the zero-components of the modes (µ, ν = 0) we still find negative norm

states appearing from the fermionic fields.

Another intersting fact is that if we look at the zero modes (m,n = 0) of the R sector

we see that could rescale the modes dµm so that they give a Clifford algebra {Γµ,Γν} = 2ηµν .

This is not possible in the NS sector because r, s ≥ 1
2

. The states created by those zero

modes dµ0 |0〉 will then be space-time fermions and we will have 2
D
2 of them.

Mass spectrum

Let’s consider the possibilities in the case of open strings, since we have two possible

boundary conditions, we will have two different sectors:

• NS sector

The mass squared operator in light-cone coordinates, before normal ordering, is:

M2 =
1

α′

D−2∑
i=1

 ∞∑
n=1

αi−nα
i
n +

∞∑
r= 1

2

rbi−rb
i
r − aNS

 , (2.99)

where we can define NNS =
∑D−2

i=1

(∑∞
n=1 α

i
−nα

i
n +

∑∞
r= 1

2
rbi−rb

i
r

)
.

The spectrum is then:
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NNS = 0: α′M2 |0〉 = −aNS |0〉 ;

NNS = 1
2
: α′M2bi†1

2

|0〉 = 1
2
− aNS |ϕ〉i ,

It is a vector representation with D − 2 degrees of freedom which means it is a

massless vector. So: 1
2
− aNS = 0→ aNS = 1

2
.

• R sector

The mass squared operator is:

M2 =
1

α′

D−2∑
i=1

(
∞∑
n=1

αi−nα
i
n +

∞∑
n=1

ndi−nd
i
n − aR

)
, (2.100)

where we can define: NR =
∑D−2

i=1

(∑∞
n=1 α

i
−nα

i
n +

∑∞
n=1 nd

i
−nd

i
n

)
.

NR = 0: α′M2 |0〉 = −aR |0〉 ,

we found the vacuum to be a massless spinor, so aR = 0 .

For closed strings we have to consider the interplay between left-movers (−) and right-

movers (+) . There are four possibilities: R-R, R-NS, NS-R, NS-NS .

The mass-square operator is in any case:

M2 =
1

α′
(
M2

L +M2
R

)
, (2.101)

where M2
L and M2

R are the mass-squared operators of open strings used for the left

and right sector rispectively.

Giolizzi, Scherk, Olive (GSO) projection

We want the degrees of freedom of the R sector to match the ones in the NS sector, so

we introduce the following operators:

GNS = − (−1)FNS , (2.102)

where FNS =
∑D−2

i=1

∑∞
r= 1

2
bi−rb

i
r counts the number of b in a state.

GR = Γ11 (−1)FR , (2.103)

where Fr =
∑D−2

i=1

∑∞
n=1 d

i
−nd

i
n counts the number of d in a state.
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The GSO projection consists in keeping only that states, regarding them as physical

states, which have:

GNS |ϕ〉 = + |ϕ〉 , (2.104)

GR |ϕ〉 = + |ϕ〉 . (2.105)

Through the GSO projection we can eliminate some of the states of the spectrum. The

operator used for the GSO projection is called the G-parity operator. This operator has

two possibile eigenvalues: ±1. States which have eigenvalue +1 are said to have positive

G-parity and states with eigenvalue −1 negative G-parity. We can then truncate the

spectrum in a way that is consistent with supersymmetry by keeping only states which

have positive or negative G-parity in a certain sector (R or NS).

For example, we have type IIA and type IIB superstring theories which differ only by

the G-parity of the R-sectors. In type IIA the two R-sectors (for left and right movers) are

taken with opposity G-parity while in type IIB they have the same G-parity. This gives

rise to different spectra even if the two theories are both born as superstring theories.

2.3.5 D-branes

D-branes (or more generally Dp-branes, where p denotes the number of spatial dimensions

of the brane) are p dimensional extended objects where the endpoints of open strings can

end. A D0-brane is a point, a D1-brane is a string, a D2-brane is a plane and so on.

The electromagnetic example

We look at the case of electromagnetism in four dimensional space to get interesting

hints that can be generalized to our string theory framework.

The Maxwell equations in vacuum are:

d∗F = 0 , dF = 0 . (2.106)

In the presence of an electric charge we have to introduce a current je such that:

d∗F = je , dF = 0 , (2.107)

and we can write F = dA .
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Equivalently, if there is a magnetic charge (magnetic monopole) we introduce a current

jm and the Maxwell equations become:

d∗F = 0 , dF = jm , (2.108)

defining F̃ =∗ F , we can write F̃ = dÃ,

and we can see that this magnetic case is dual to the previous electric case.

If we consider electromagnetism in D dimensions, things change slightly.

For an electric charge (point-like) we still have a gauge potential A which is a one-form

and a two-form field strenght F = dA, while the dual field strength F̃ is now a (D − 2)-

form. This gives a (D − 3)-form gauge potential Ã, which means the magnetic charge is

not a point-like.

In general, when we have a (1 + p)-form gauge potential, it will couple electrically to

a p-dimensional object and magnetically to a D − (p+ 4) dimensional object. One can

see this from this chain of relations:

p− brane→ A1+p → F2+p ,

∗F2+p → F̃D−(2+p) → ÃD−(p+3) → (D − (p+ 4))− brane .

So, in the case of the two type II superstring theories we can find the branes that

couple to the forms we have in the theories.

IIB

R-R:

• A0: has a (−1)-brane (instanton) electric charge and a 7-brane magnetic charge;

• A2: has a 1-brane electric charge and a 5-brane magnetic charge;

• A4: has a 3-brane electric charge and a 3-brane magnetic charge;

NS-NS:

• B2: has a 1-brane electric charge (the fundamental string) and a 5-brane magnetic

charge (NS 5-brane).
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IIA

R-R:

• A1: has a 0-brane electric charge and a 6-brane magnetic charge;

• A3: has a 2-brane electric charge and a 4-brane magnetic charge;

NS-NS:

• B2: has a 1-brane electric charge (the fundamental string) and a 5-brane magnetic

charge (NS 5-brane).

3 Supersymmetry and supergravity

3.1 Supersymmetry

In supersymmetric theories we postulate the existence of a symmetry between fermions

and bosons, called supersymmetry, and we build Lagrangians which are invariant under

supersymmetry transformations of the fields. Those transformations are generated by a

fermionic operator Q (we know it is fermionic because it changes sign under 360 degree

rotations) which turns fermionic states into bosonic ones and vice versa.

This operator is related to space-time symmetries (since the spin is connected with

spatial rotations) and to internal symmetries. The interesting thing is that by performing

two successive supersymmetry transformations on a state we get back the same state

but evaluated at a different space-time position. This is how supersymmetry is linked

to space-time symmetries. Also, when making supersymmetry a local symmetry of the

theory, we get fields that reproduce General Relativity and the theory we obtain is called

Supergravity.

Let’s see how supersymmetry is actually implemented in a theory. Bosonic generators

of symmetry transformations form a Lie algebra, so we have to extend this concept in

order to accomodate fermionic generators too.

3.1.1 Lie superalgebra

The definition for an ordinary Lie algebra g is:

1. g is a vector space on R (or C);
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2. there is an internal composition law [·, ·] which is bilinear and antisymmetric;

3. the Jacobi identity holds:

[[A,B] , C] + [[B,C] , A] + [[C,A] , B] = 0 . (3.1)

In a Lie superalgebra we have both bosons and fermions, we assign a certain grade to

them to distinguish the different kind of operators. Bosons have grade 0 (even) while

fermions have grade 1 (odd). So, the definition of a superalgebra s is:

1. s is a graded vector space on C: s =0 s ∪ 1s ;

2. there is an internal composition law [·, ·] which is bilinear and superantisymmetric

(symmetric for fermions and antisymmetric for bosons):

[A,B] = (−1)1+grad(A)grad(B) [B,A] ; (3.2)

and it is additive with respect to the grade:

C = [A,B] → grad (C) = grad (A) + grad (B) ; (3.3)

3. the superJacobi identity holds

(−1)grad(A)grad(C) [[A,B] , C]+(−1)grad(B)grad(A) [[B,C] , A]+(−1)grad(C)grad(B) [[C,A] , B] = 0 .

(3.4)

We have introduced the concept of Lie superalgebra because it is what is mathematically

needed to be able to construct an algebra which mixes space-time symmetries (P ) with

internal symmetries (g) non-trivially (which means differently from P ⊕ g).

3.1.2 Supersymmetry algebra

The bosonic part of the algebra, which consists of the Poincaré algebra and the internal

symmetry algebra, has generators Pµ, Jµν ∈ P and Tr ∈ g , with commutation rules:

[Pµ, Pν ] = 0 , (3.5)

[Pµ, Jνρ] = ηµνPρ − ηµρPν , (3.6)
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[Jµν , Jρσ] = ηµσJνρ + ηνρJµσ − (ηµρJνσ + ηνσJµρ) , (3.7)

[Pµ, Tr] = 0 , (3.8)

[Jµν , Tr] = 0 , (3.9)

[Tr, Ts] = frstTt . (3.10)

We call the fermionic generator Qi
α, where i = 1, . . . , N is the index of a representation

of g (we will have N such generators called supercharges) and α is a spinorial index (spin
1
2
). It has the following commutation and anticommutation rules:

[
Qi
α, Pµ

]
= 0 , (3.11)

[
Qi
α, Jµν

]
=

1

2
(γµν)

β
αQ

i
β ; (3.12)

where γµν = 1
2

(γµγν − γνγµ) and γµ are Dirac matrices which satisfy: {γµ, γν} = 2ηµν

.

If we consider a theory where N = 1, we find:

{Qα, Qβ} = 2 (γµC)αβ Pµ ; (3.13)

where Cαβ is the charge conjugation matrix, defined through the relation CγµC−1 =

− (γµ)T .

and finally:

[Qα, Tr] = i (γ5)βαQβtr ; (3.14)

where tr is an arbitrary complex number which can be determined using the Jacobi

identity for Qα, Tr and Ts. We then find that we can set it to one.
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3.1.3 Representation of N=1 SUSY algebra

To find the representations of the SUSY algebra, we can use Wigner’s method of re-

duced representations. We set the reference momentum to qµ and we find the unitary

representations of the subgroup which leaves qµ invariant (little group of qµ).

• Massless case: qµqµ = 0 .

Using the SUSY algebra we find that the Qα form a Clifford algebra of raising/lowering

operators for the helicity of a state. Q raises the helicity by 1
2

while Q† lowers it by the

same amount.

So, if we start from a state with maximum helicity λ, we can find the other states of

the same multiplet by acting with the lowering operator. In the case of N = 1 we have

the multiplet:

|λ〉 , (3.15)∣∣∣∣λ− 1

2

〉
= Q† |λ〉 . (3.16)

We also have to couple the state |λ〉 with the state of opposite helicity |−λ〉 because

of CPT invariance. So we add the CPT conjugate to the multiplet we have found:

|−λ〉 , (3.17)∣∣∣∣−λ+
1

2

〉
= Q |−λ〉 . (3.18)

At the end, we have different multiplets for the various possible values of the helicity

of the starting state (λ):

λ =
1

2
:

∣∣∣∣12
〉
, |0〉 , |0〉 ,

∣∣∣∣−1

2

〉
;

the λ = 1
2

multiplet contains two scalars |0〉 and two states of a spin 1
2

fermions
∣∣1

2

〉
.

λ = 1 : |1〉 ,
∣∣∣∣12
〉
,

∣∣∣∣−1

2

〉
, |−1〉 ;

the λ = 1 multiplet contains to two states of a vector |1〉 and two states of a spin 1
2

fermions
∣∣1

2

〉
.

λ =
3

2
:

∣∣∣∣32
〉
, |1〉 , |−1〉 ,

∣∣∣∣−3

2

〉
;
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the λ = 3
2

multiplet contains two states of a vector |1〉 and two states of a spin 3
2

fermions
∣∣3

2

〉
, the gravitino.

λ = 2 : |2〉 ,
∣∣∣∣32
〉
,

∣∣∣∣−3

2

〉
, |−2〉 ;

the λ = 2 multiplet contains the two polarizations of the graviton |2〉 and two states

of a spin 3
2

fermions
∣∣3

2

〉
, the gravitino.

• Massive case: qµqµ = −m2 , qµ = (m, 0, 0, 0) .

Since rotations leave qµ invariant we have that the little group is SO(3). The Q algebra

is:

{
Qi
A,
(
QB
j

)∗}
= 2mδBAδ

i
j , (3.19)

{
Qi
A, Q

B
j

}
=
{(
Qi
A

)∗
,
(
QB
j

)∗}
= 0 . (3.20)

All the Q contribute to enlarge the multiplet as they form a algebra of raising/lowering

operators. As before, the total number of states in a multiplet is 22N .

Since every state has fixed spin, when we lower the spin we mix states with different

spin (we get all possible states from |l− s| to |l+ s|). Although, in this way it is not clear

from the structure of the multiplet what is its particle content.

3.1.4 Supersymmetry transformations for N=1 SUSY

Let’s look at the SUSY transformations for the symplest supersymmetric model with

N = 1 which is composed of two free (non-interacting) massless fields. One is a complex

scalar field φ and the other a Weyl spinor of spin 1
2
χα (which we take to be left-chiral).

We consider a global transformation proportional to an infinitesimal fermionic param-

eter ε (which is space-time independent) which is a Weyl spinor of dimension −1
2
. The

postulate of supersymmetry is that supersymmetric transformations turn bosons into

fermions and vice versa. So, by dimensional analysis we guess:

δφ ' ε · χ , (3.21)

δχ ' Cε∂µφ
† . (3.22)
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To determine the actual transformations we must also check the behaviour of the

guessed terms under Lorentz transformations. Eventually, we get:

δφ = ε · χ , (3.23)

δχ = −C∗ (∂µφ)σµiσ2ε∗ ; (3.24)

where σµ = (1, ~σ), ~σ are the Pauli matrices and σ2 =

(
0 −i
i 0

)
.

3.2 Supergravity

When we consider local SUSY transformations for the fields, which means we are taking

the parameter ε to be space-time dependent, we are forced to introduce a gauge field that

has the properties of the graviton. For this reason, theories that exhibit local supersym-

metry invariance are called supergravity theories.

The gauge multiplet consists of the frame field eaµ (x) which describes the graviton and

N vector-spinor fields Ψµ (x) whose quanta are the gravitinos. In the case of N = 1 we

only have the graviton and a Majorana spinor gravitino in the multiplet.

3.2.1 Supergravity as the low-energy limit of superstring theory

In the spectrum of a string theory we always have a finite number of massless states and

an infinite tower of massive states at a mass scale charachterized by the string tension.

If we are only interested in studying string theory in the low-energy limit (α′ → 0 and

T → ∞) we can forget about the massive states and neglect their contribution to the

action. In this way, we write down an effective action which only includes the fields

corresponding to the massless states. In principle, a low-energy effective action Seff for

the massless fields can be found by integrating out the massive fields from the classical

exact action S. By doing so, no approximation would be introduced but then the effective

action would be non-local and very complicated. Since not even the exact action to start

with is known, the procedure of integrating the heavy fields is out of reach. So, we take

a different approach: we study the string S matrix elements and construct a classical

action for the massless fields that reproduces them. Furthermore, the leading terms of

the effective action constructed in this way can be found by symmetry principles: gauge

invariance and local supersymmetry. What we find is that a good approximation to string
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theory is given by a supergravity theory describing the interactions of the massless modes

only.

It is not obvious from the start that this approach can be useful for analyzing non-

perturbative features of string theory, as extrapolations from weak to strong coupling are

usually beyond control. Although, if one considers only quantities that are “protected”

by supersymmetry many properties of the theory can be discovered.

3.2.2 M-Theory and D = 11 supergravity

After the discovery of the five different ten-dimensional superstring theories, it was found

that they were all related to one another through different dualities. Moreover, two of

those superstring theories exhibit an eleventh dimension at strong coupling. This 11-

dimensional limit, called M-theory, does not contain strings but other extended objects

called membranes.

We can see 11-dimensional supergravity as the low-energy effective action of M-theory,

and start its analysis by studying the properties of the corresponding supergravity theory.

Note that D = 11 is the maximum dimension for a supergravity theory, we know this from

the following argument: in eleven dimnension the Lorentz group is SO(1, 10), so spinors

have 2b
d
2c = 32 components. In four dimensions each eleven dimensional spinor would

correspond to eigth four dimensional ones. So, if we consider N = 8 supersymmetry, we

can have helicities from −2 to +2 in the same supermultiplet. Interestingly, only for spin

≤ 5
2

consistent interactions terms can be written down.

Field content

In eleven dimensional supergravity we have only three different fields: the graviton, repre-

sented by the vielbein eAM (x) where A,B, ... are tangent (flat) space indices and M,N, ...

are base (curved) space indices; a Majorana gravitino ψM which is the gauge field for lo-

cal supersymmetry; finally, by counting fermionic and bosonic degrees of freedom (which

must be equal because of supersymmetry) we discover that we also have a 3-form potential

AMNP which represents a rank 3 antisymmetric tensor.

Action

We take as a postulate the presence in the action of the graviton and gravitino terms

together with the covariant kinetic term for the 3-form potential. We will also have
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additional terms but we are going to neglect them. Anyway, guided by the requirement of

invariance under A3 gauge transformations, together with general coordinate invariance,

local supersymmetry and dimensional analysis, we write the action as

S =
1

2k2

∫
d11x e

[
eAMeBNRMNAB − ψ̄MγMNPDNψP −

1

24
FMNPQFMNPQ + ...

]
,

(3.25)

where RMNAB is the Riemann tensor, FMNPQ is the field strength of AMNP (FMNPQ =

3∂[MANPQ]), k is the 11-dimensional Newton constant and γMNP is the antisymmetrized

product of gamma matrices γMNP = 1
3!

(
γ[MγNγP ]

)
.

Supersymmetry transformations

The action is invariant under local supersymmetry transformations, which depend on

an infinitesimal space-time dependent Grassman parameter ε (x) that transforms as a

Majorana spinor. The SUSY transformations are:

δeAM =
1

2
ε̄γAψM , (3.26)

δAMNP = −3ε̄γ[MNψP ] , (3.27)

δψM = DMε+
1

12

1

4!

(
γNPQRM FNPQR −

1

2
γPQRFMPQR

)
; (3.28)

where the Dirac matrices in curved space are γM = eAMγA and the covariant derivative

of the spinor parameter is:

DMε = ∂Mε+
1

4
ωMABγ

ABε ; (3.29)

ωMAB is the spin connection and it can be expressed in terms of the elfbein:

ωMAB =
1

2
(−ΩMAB + ΩABM + ΩBMA) ; (3.30)

where ΩA
MN = 2∂[Ne

A
M ] .
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3.2.3 Type IIA supergravity

Type IIA supergravity is the supergravity theory one gets as the low-energy limit of type

IIA superstring theory. This superstring theory arises from a specific combination of

boundary conditions for the closed string. It is also possible to obtain it from M-theory

through dimensional reduction, which means we take one of the spatial directions to be

circular and keep only the zero modes of the Fourier expansions of the fields on this

direction. By identifying the bosonic and fermionic degrees of freedom in the correct

way (fields in eleven dimensions can be decompose in a specific way to give rise to the

right fields in ten dimensions) we find the same field content as in superstring theory. As

previously explained, the supergravity theory is then found by keeping only the massless

modes of the corresponding superstring theory.

Field content

The bosonic fields of type IIA supergravity come from the massless modes in the R-R

and the NS-NS sectors. They are the graviton (gMN), the Kalb-Ramond field (BMN),

the dilaton (φ), a rank-1 antisymmetric tensor (AM) and a rank-3 antisymmetrci tensor

(AMNP ).

The fermionic fields arise from the NS-R and R-NS sector. They are: two Majorana-

Weyl gravitino (ψaM , a is a spinor index) with opposite chirality and two Majorana-Weyl

dilatino (λa) also with opposite chirality.

Action

The bosonic part of the action is composed of the graviton term together with the ones

of the dilaton and the gauge fields. We can write it as:

Sb =
1

2k2

∫
d10x
√
−g
[
e−2φ

(
R + 4∂Mφ∂Mφ−

1

2
HMNPHMNP

)
− 1

4
FMNFMN −

1

4
FMNPQFMNPQ

]
,

(3.31)

plus a Chern-Simons term which we do not quote here.

The fermionic part will then include the kinetic terms for the gravitinos and the

dilatinos.
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Equations of motion

We list here the equations of motion for the bosonic fields of the theory as written in [14];

they are:

R + 4∇2Φ− 4 (∇Φ)2 − 1

2
|H|2 = 0 , (dilaton) (3.32)

e−2φ

(
RMN + 2∇M∇Nφ−

1

2
H PQ
M HNPQ

)
− 1

4

∑
p≥2

|Fp|2MN = 0 , (Einstein) (3.33)

d
(
e−2φ ∗H

)
+

1

2

∑
p≥2

Fp−2 ∧ ∗Fp = 0 , (B − field) (3.34)

dFp +H ∧ Fp−2 = 0 , (Bianchi) (3.35)

∗ Fp + (−1)p(p+1)/2 F10−p = 0 ; (duality) (3.36)

where |Fp|2MN = 1
(p−1)!

F
Q1...Qp−1

M FNQ1...Qp−1 .

These equations will be of paramount importance to us, since they are the starting

point of our work.

4 Kaluza-Klein supergravity

Kaluza-Klein supergravity is the result of the mixing of the Kaluza-Klein idea for com-

pactifications and supergravity theories. By using those ideas together, we could regard

supergravity theories as fundamental and take them as the actual theories of our phys-

ical world. Then our most succesful description of reality, the Standard model, could

just be seen as the result of a specific compactification scheme of a more fundamental

supergravity theory.

4.1 Compactification

Since we will be dealing with compactifications, let us take a brief overlook at what

this procedure is and how it works. In short, compactificatifying a dimension means we
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identify the boundaries of a non-compact dimension to obtain a compact one. The most

simple example of this procedure is the circle, which can be seen as the compactification

of an infinite line where we have identified points at a distance of 2πRk where k is an

integer number.

If we are dealing with several spatial dimensions we can compactify some of those

dimension while keeping the rest of them untouched. In this way, we can study theories

in many spatial dimensions and then compactify all but three of them to see if the theory

studied resembles the one we are used to ordinarily.

Compactifying a spatial dimension means we take the fields to be periodic in that

direction. Since they are periodic we can expand them in Fourier modes, called Kaluza-

Klein modes, along that direction. As a result, we get an infinite number of modes in the

other directions which are referred to as KK tower.

4.2 The Kaluza-Klein idea

Kaluza and Klein first had the idea to introduce another space dimension in order to unify

the known forces of nature (gravity and electromagnetism at their time) of the observable

four dimensional space-time into a gravity theory living in a higher dimensional one.

Their suggestion is that it is possible to obtain a theory of electromagnetism and

gravity in four dimensional space-time from a theory of gravity in a five dimensional

space-time by compactifying the fifth dimension to a circle. If the size of the compactified

dimension is taken to be very small, then we could imagine it to be impossible for us

to detect it with our experiments. In this way, we would effectively experience a four

dimensional reality even if it actually is a five dimensional one. Let’s see in more details

how this works.

The starting point is hypothesizing a five dimensional metric gMN :

gMN =

(
gµν + e2σAµAν e2σAµ

e2σAν e2σ

)
; (4.1)

where gµν is the standard four dimensional Minkowski metric, Aµ is a four vector

and σ is a scalar field. We can now use this metric to write down Einstein’s equations

in this case. Then, if one implements the hypothesys that none of the terms appearing

in the definition of the metric gMN depends on the fifth coordinates y (called “cylinder

condition”) ∂gMN

∂y
= 0 , we can get the field equations of four dimensional general relativity

and electromagnetism from Einstein’s equations in five dimensions and the equations for
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the scalar σ.

By using the cylinder condition one avoids the “issue” of having an infinite tower of

modes coming from the compactified dimension, but the theory obtained in this way still

has many problems to be solved before one can consider it a serious candidate for the

description of our reality. Nevetheless, the Kaluza-Klein idea seems very promising as it

can be applied in different context where it might give rise to a more realistic theory. For

example, it provides a mechanism through which one can tackle the problem of surplus

spatial dimensions in string and supergravity theories.

4.3 Kaluza-Klein supergravity theories

One of the most recent development of the Kaluza-Klein idea is Kaluza-Klein supergravity.

With the discovery of supergravity theories which live in higher than four space-time

dimension, it has been a natural approach to reconsider the Kaluza-Klein idea in order

to lower the number of spatial dimensions to the familiar three ones we are accostumed

with. As presented in [8], we give here an outline of the general features of Kaluza-Klein

theories and how the mass spectrum of a K-K theory can be found:

1. we consider our complete theory in d dimensions: we need to know the metric gMN

and all other fields.

2. We are interested in ground-state solutions of the quations of motion that show a

spontaneus compactification to Md−k , where Md−k is a maximally symmetric space-

time and Mk will be the compactified internal space. Which means we can see the d

dimensional space-time Md as the cross product of Md−k with Mk . In other words,

we want the ground-state metric ġMN to be decomposable into the direct product

(or “warped-product” if there is a factor that multiplies one of the components of

the metric) of the ground-state metrics of Md−k (ġµν) and Mk (ġmn).

ġMN =

(
f (y) ġµν (x) 0

0 ġmn (y)

)
(4.2)

where x are space-time coordinates (coordinates of Md−k), y are internal coordinates

(coordinates of Mk) and f (y) is the warping factor.

3. To find the mass spectrum in Md−k of the theory we expand the fields to linear

order in their perturbations around their background value. For example, for the
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metric we write: gMN = ġMN + hMN ;

where hMN is the fluctuation of the metric from its ground-state value.

4. Then we linearize the equations of motion by substituting the expansions of the

fields and retaining only terms up to linear order in the perturbations.

5. Eventually, we expand the perturbations into harmonics on Mk which will give us

the mass spectrum.

5 Type IIA supergravity on AdS7 ×M3

In this section, we are going to see in some detail how the solutions to the equations of

motion of supergravity on a specific background can be found. Our method will make

use of generalized complex geometry to translate the supersymmetry transformations into

constraints on the geometry of space-time and to find their solutions. The reason why

we care about the supersymmetry transformations is that there is a close relationship

between them and the field equations of the theory. For example, it must be true that

the supersymmetry variation of an equation of motion gives another expression which still

satisfies the equations of motion. Actually, all we would need to find all the equations of

motion is just one of those equations and the supersymmetry transformations. Another

way the equations of motion can be deduced is by computing the commutators of local

supersymmetry transformations of the fields. In fact, for the supersymmetry algebra to

be closed we need the commutators to be a combination of local symmetries (general

coordinate invariance, local supersymmetry and local gauge symmetry) and we need the

equations of motion must be satisfied. So, if we construct a consistent (closed) supersym-

metry algebra using the supersymmetry transformations of the fields, at the same time

we will also obtain the equations of motion.

5.1 Geometrical aspects of supergravity

In supergravity theories, the presence of certain objects influences the geometrical struc-

ture of the background space where the theory lives. More concretely, the spinors one

introduces when writing supersymmetry transformations imply topological conditions on

the manifolds. The supersymmetry transformations themselves further constrain the

plethora of compatible manifold by adding further requirements through differential con-

ditions.
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For example, the presence of a nowhere vanishing spinor restricts the structure group

of the manifold, which is the group of the transition functions between charts on the

manifold, because only transition functions which connects the charts in a specific way

are allowed.

Since the supersymmetry transformations are hard to solve one can try to replace

spinors with differential forms (requiring that they give the same reduction of the structure

group) and rewrite SUSY transformations as differential equations on forms, which are

usually easier to deal with.

5.1.1 Type II supergravity and complex geometry

Here we consider the case of type II supergravity. If we are interested in supersymmetric

bosonic configurations, we can set the fermionic fields to zero; then the generic super-

symmetry transformations are proportional to the bosonic fields and the two spinorial

parameters.

Furthermore, we require that our solutions are d− k vacua (states with no particles),

which means that they are maximally symmetric. Maximal symmetry makes the metric

block-diagonal and puts strong constraints on the allowed fields of the theory. The most

general expression we can write down for such a metric would be:

ds2
10 = e2A(y)ds2

M10−k
(x) + ds2

Mk
(y) ; (5.1)

where M10−k is the external space with coordinates x and Mk is the internal space with

coordinates y, and A (y) is the warping factor. Also, we can split the gamma matrices ΓM

in a 10−k part Γµ and a k part Γm so that they act on tensor product space M10−k⊕Mk

:

Γµ = eAγµ ⊗ 1 ; Γm = γ5 ⊗ γm . (5.2)

The same splitting can be done with the spinorial parameter of the supersymmetry

transformations which can be written as:

ε =
∑
i,I

αiIζi ⊗ ηI , (5.3)

where i = 1, 4 and I = 1, 8 .

Again, the requirement of maximal symmetry constrains the external part ζi of the spinor
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to take certain values, so from the SUSY transformations we obtain a set of differential

equations for the internal spinors ηI . However, the system of equations written in terms

of spinorial quantities is usually very hard to solve anyway and so we turn to a different

approach.

We can recongnize what kind of reduction of the structure group of the manifold

is given by the spinors we have in the theory and find the differential forms that give

the same reduction. For example, a spinor η on a six-dimensional internal manifold M6

gives a reduction of the structure group to SU(3) (because SU(3)matrices leave the spinor

invariant) and this reduction can also be obtained by defining two differential forms on

the manifold, namely a real two-form J and a complex, decomposable, non-degenerate

three-form Ω, which satisfy a compatibility condition. It can be proved that one is able to

build invariant spinors with those forms and vice versa, showing that the two approaches

are indeed equivalent. Once we know how to switch from spinors to forms we can rewrite

the supersymmetry transformations as a set of differential equations on forms, which turns

out to be more manageable and easier to work with.

In the case we have been dealing with, where we consider type II supergravity com-

pactified to a four dimensional maximally symmetric space-time with the two internal

spinors coinciding, the supersymmetry transformations, in the absence of fluxes, trans-

late to differential conditions on J and Ω which make our manifold both complex and

symplectic at the same time, or in other words they make it a be a Calabi-Yau manifold.

If we were to tackle the case where the two spinors are not equivalent, then we would

face much greater difficulties. In this scenario, the structure group of the manifold is

a function of the two spinors taken together, so at each point we could have different

reductions depending on the relation between the spinors at that point (at some point

on the manifold they may be equivalent, giving an SU(3) structure, while at other points

they may not, giving SU(2) structure). When the structure group becomes dependent

on the point of the manifold the translation from spinors to forms becomes excidingly

difficult and a different approach is needed to make progress.

5.1.2 SU(3) structure

We give here an outline of the case we have talked about, showing the links between the

two approaches.
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Tensors

As we have said, we can define an SU(3) structure by using tensors. We start by defining

an Almost Complex Structure (ACS): an ACS I : TM → TM , where TM is the tangent

bundle, is a tensor Imn such that:

• I2 = −1 ;

• Imn is Hermitian (or J ≡ gI is antisymmetric) .

What happens now is that a generic one-form ω can either be in the i-eigenbundle L

(Iω = iω) or in the −i-eigenbundle L̄ (Iω = −iω). In this way, I defines a U(3) structure

that can be augmented to an SU(3) structure by defining a three form Ω with specific

properties.

An ACS is then said to be integrable if the bundle L satisfies:

[L,L]Lie ⊂ L . (5.4)

I is then called a Complex Structure (CS). An alternative definition of integrable

structures makes use of the form Ω we have mentioned. In particular, an integrable I is

given by a precise Ω which has the following property: it exists a form W5 such that

dΩ = W5 ∧ Ω . (5.5)

So, an SU(3) structure is defined by a pair (J,Ω) where J is a real two-form and Ω is a

complex, non-degenrate, decomposable three-form such that: J ∧Ω = 0 and J3 = 3
4
iΩ∧ Ω̄

Spinors

As we have seen, we can define an SU(3) structure by using a spinor on M6: a six-

dimensional spinor makes the manifold M6 a spin-manifold (M6 = Spin (6) ∼= SU (4)); if

the spinor is nowhere vanishing on M6 we then need to consider only transition functions

that preserve such SU(4) spinor: ηα = gαβηβ where η is the spinor and g is the transition

function, has to hold. The identity is true for η SU(4) spinor only if g ∈ SU (3).

5.1.3 An introduction to generalized complex geometry

Generalized complex geometry (GCG) is the tool we need to solve the problems we face

when rephrasing SUSY transformations of spinorial objects to differential conditions on
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forms. With GCG, we switch focus from the structure group on the tangent bundle of the

manifold to the structure group on the generalized tangent bundle (direct sum of tangent

and cotangent bundle: T⊕T ∗). In this new space, the structure group is independent from

the points of the manifold and so we can give a unique translation of the spinorial system

in terms of new objects typical of this approach. In fact, when we consider the two spinors

together to form bi-spinors, called pure spinors, we get a reduction of the structure group

on the generalized tangent bundle to a SU (3)× SU (3). The same reduction can also be

obtained through two generalized complex structures (GCS) J . We will see how to relate

pure spinors and GCS so that the requirement that two GCS define a SU (3)×SU (3) can

be translated into pure spinor language. Eventually, one can rewrite the supersymmetry

transformations using pure spinors to get a very simple system of equations.

5.1.4 SU (3)× SU (3) structure

Let’s see what happens when we use generalized complex geometry in a little more details.

Here we explore the links between the two different descriptions of an SU (3) × SU (3)

structure. Remember that we are still considering the case of a six dimensional internal

manifold M6.

Tensors

An SU (3) × SU (3) structure can be defined by using tensors. We start by defining a

Generalized Almost Complex Structure (GACS): an ACS J : T ⊕ T ∗ → T ⊕ T ∗ is a map

such that:

• J 2 = −16×6 ;

• J is Hermitian or J tIJ = I , with I =

(
0 16

16 0

)
.

Now, the elements of generalized tangent bundle, called generalized complex vectors

X (which are a combination of a form and a vector field) can either belong to the i-

eigenbundle LJ (JX = iX) or in the −i-eigenbundle L̄J (JX = −iX). In this way, J
defines a U(3,3) structure on the generalized tangent bundle T ⊕ T ∗.

A GACS is then said to be integrable if the i-eigenbundle LJ satisfies:

[LJ , LJ ]Courant ⊂ LJ ; (5.6)
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J is then called a Generalized Complex Structure (GCS). An alternative definition of

integrable structures which links them to polyforms (pure spinors) is the following: JΦ

is integrable if the associated pure spinor Φ is related to a generic form W on T ⊕ T ∗

through the identity:

dΦ = W · Φ . (5.7)

An U (3) × U (3) structure (which can then easily be reduced to a SU (3) × SU (3)

structure) is defined by two commuting GACS ([J1,J2] = 0) which are compatible (they

define a positive-definite metric through their product: G ≡ −J1J2).

Pure spinors

If we look at the differential operators on M6 :

Γ =
{
∂1x, . . . , ∂6x, dx

1∧, . . . , dx6∧
}
,

they form a Clifford algebra Cliff (6, 6) with respect to the metric I =

(
0 16

16 0

)
.

Then, all differential forms can be seen as Cliff (6, 6) spinors. We call Φ± differential

forms of even/odd degree respectively.

A pure spinor Φ is a polyform whose annihilator space LΦ (the space of all X of T⊕T ∗

such that X · Φ = 0 ) has maximal dimension (six in the case of M6) and whose norm is

non-zero. The general form of a pure spinor is:

Φ = Ωk ∧ eB+iJ ; (5.8)

where Ωk is a complex k-form and B, J are real two-form. We can now make the

association J → Φ , LJ → LΦ to make sense of the integrability condition in terms of Φ

previously written.

A pair of pure spinors is said to be compatible if the corresponding GACS are compati-

ble and if they have the same norm. We also have the general result that every compatible

pair of pure spinors Φ± can be written as:

Φ± = eB∧η1
+ ⊗ η

2†
± ; (5.9)

where B is a real two-form and η1,2 are Cl (6) spinors. In fact, the algebra Cl (6, 6) is

found to be isomorphic to two copies of the algebra Cl (6).
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If such compatible pair of pure spinors exists, it reduces the structure group of T ⊕T ∗

to SU (3)× SU (3).

5.2 AdS7 ×M3 solutions of type IIA supergravity

We have sketched how the supersymmetry transformations, which are intimately con-

nected to the equations of motions, can be rewritten in a more simple way and then

solved. We have mostly been concerned with the case of type II supergravity where the

base-space takes the form M4 ×M6 and we now turn to the case where the background

space is taken to be AdS7 ×M3.

The analysis has been done in [21], [22], [23]; in those works generalized complex geom-

etry is used to rewrite the supersymmetry transformations for the case of II supergravity.

It turns out that the system completely determines the form of the metridc and the fluxes.

We list them here.

The metric is:

ds2
10 = e2Ads2

AdS7
(x) + ds2

M3
(y) , (5.10)

where A is the warping factor. It was also found that the internal space M3 is an S2-

fibration over an interval. The zero form flux F0 is the Romans mass and it is a constant.

The three form flux H is:

H = −
(
6e−A + F0xe

φ
)
volM3 , (5.11)

where x is a function related to the volume of the S2 contained in M3.

The two form flux F2 is:

F2 =
1

16
eA−φ
√

1− x2
(
F0e

A+φx− 4
)
volS2 , (5.12)

the four form flux F4 is zero because otherwise it would break maximal symmetry in

seven dimensions. In our treatment we will use these values of the metric and fluxes as

background values and we will expand the corresponding fields in perturbations around

them in order to linearize the equations of motion.
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6 Linearized IIA supergravity equations of motion

on AdS7 ×M3 backgorund

We will now turn to the task of linearizing the equations of motion of type IIA supergravity

on the specific background we have considered. We are going to start from the known

equations of motion of type IIA supergravity then we will expand the fields to first order in

the fluctuations and keep only first order terms in the equations. Finally, we will evaluate

the expressions found using the background value of the fields and metric for the case of

AdS7 ×M3 background.

6.1 Bianchi identities

Let’s start by looking at the Bianchi identities and their dual counterpart. As we have

seen before, we can write the generic Bianchi identity in form language as:

(d+H∧)F = 0 ; (6.1)

more explicitly, for an R-R field strength Fp which is a p-form, the Bianchi identity is:

dFp +H ∧ Fp−2 = 0 . (6.2)

We will denote the background fields with a dot ˙ over their symbol. So, if we consider

only the background fields the previous equation reads:

dḞp + Ḣ ∧ Ḟp−2 = 0 ; (6.3)

we also require:

dḢ = 0 . (6.4)

Now, if we expand the fields to first order:F = Ḟ + f

H = Ḣ + db
, (6.5)

we can linearize the Bianchi identity:
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dḞp + Ḣ ∧ Ḟp−2 + dfp + Ḣ ∧ fp−2 + db ∧ Ḟp−2 = 0 . (6.6)

Using the identity for the background fields found in equation (6.3) we get the most

general expression for the linearized Bianchi identity:

dfp + Ḣ ∧ fp−2 + db ∧ Ḟp−2 = 0 . (6.7)

6.1.1 2-Form field strength

We can start our analysis by considering the case where F is the 2-form. The linearized

equation becomes:

df2 + dbḞ0 = 0 , (6.8)

where Ḣ ∧ f0 = 0 .

The identity is satisfied for:

f2 = dc1 − bḞ0 . (6.9)

If we consider the background fields only, we have:

dḞ2 + Ḣ ∧ Ḟ0 = 0 , (6.10)

which gives us the useful identity:

dḞ2 = −Ḣ ∧ Ḟ0 . (6.11)

6.1.2 4-Form field strength

Let’s turn our attention to the next higher form, the 4-form F4. In this case the linearized

Bianchi identity is:

df4 + Ḣ ∧ f2 + db ∧ Ḟ2 , (6.12)

which holds for:

f4 = dc3 − b ∧ Ḟ2 + Ḣ ∧ c1 . (6.13)
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For the background fields only the Bianchi identity reads:

dḞ4 + Ḣ ∧ Ḟ2 = 0 , (6.14)

remembering that Ḟ4 = 0, this tells us:

Ḣ ∧ Ḟ2 = 0 . (6.15)

6.1.3 6-Form field strength

The linearized Bianchi identity in the case of the 6-form F6 is:

df6 + Ḣ ∧ f4 = 0 . (6.16)

We can rewrite the equation knowing from (3.36) that f6 = − ∗ f4 :

− d ∗ f4 + Ḣ ∧ f4 = 0 . (6.17)

Taking the Hodge dual of this equation we get:

− ∗d ∗ f4 + ∗
(
Ḣ ∧ f4

)
= 0 . (6.18)

Substituting the expression of f4 found in (6.13) and defining: d† ≡ ∗d∗ = ιM∇M =

gMN ιM∇N we get:

− d†dc3 + d†
(
b ∧ Ḟ2

)
− d†

(
Ḣ ∧ c1

)
+ ∗

[
Ḣ ∧

(
dc3 − b ∧ Ḟ2 + Ḣ ∧ c1

)]
= 0 , (6.19)

− d†dc3 + d†
(
b ∧ Ḟ2

)
− d†

(
Ḣ ∧ c1

)
+ ∗

(
Ḣ ∧ dc3

)
= 0 , (6.20)

where we have used Ḣ ∧ Ḣ = 0 and Ḣ ∧ Ḟ2 = 0 .

Now, we can switch to index notation in order to be able to analyse the various cases

where the free indices take value in the internal (M3) or external (AdS7) subspace. Let’s

see term by term what is the “translation” of this equation:

d†dc3 =
1

3!
∇M∇[NcPQR]ιM

(
dxN ∧ dxP ∧ dxQ ∧ dxR

)
=

4

3!
∇M∇[McPQR]

(
dxP ∧ dxQ ∧ dxR

)
=
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=
4

3!

[
1

4

(
∇M∇Mc[PQR] − 3∇M∇[P |cM |QR]

)]
dxP ∧ dxQ ∧ dxR , (6.21)

d†
(
b ∧ Ḟ2

)
=

4!

2!2!
∇Mb[NP ḞQR]ιM

(
dxN ∧ dxP ∧ dxQ ∧ dxR

)
= 6·4∇Mb[MP ḞQR]

(
dxP ∧ dxQ ∧ dxR

)
=

= 24

(
1

2
∇MbM [P ḞQR] +

1

2
∇M ḞM [RbPQ]

)
dxP ∧ dxQ ∧ dxR , (6.22)

d†
(
Ḣ ∧ c1

)
=

4!

3!
∇MḢ[NPQcR]ιM

(
dxN ∧ dxP ∧ dxQ ∧ dxR

)
= 4·4∇MḢ[MPQcR]

(
dxP ∧ dxQ ∧ dxR

)
=

16

[
1

4

(
3∇MḢM [PQcR] −∇McMḢ[PQR]

)]
dxP ∧ dxQ ∧ dxR , (6.23)

∗
(
Ḣ ∧ dc3

)
= ∗

(
7!

4!3!
Ḣ[MNT∇UcV ZS]dx

M ∧ dxN ∧ dxT ∧ dxU ∧ dxV ∧ dxZ ∧ dxS
)

=

= 35

√
−g
3!

ε MNTUV ZS
PQR Ḣ[MNT∇UcV ZS]dx

P ∧ dxQ ∧ dxR . (6.24)

Where we have used the following identities:

ιM
(
dxM1 ∧ ... ∧ dxMk

)
= kδ

[M1

M dxM2 ∧ ... ∧ dxMk] , (6.25)

AM1...Mk
∧BN1...Nj =

(k + j)!

k!j!
A[M1...MK

BN1...NJ ] , (6.26)
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∗
(
AM1...Mk

dxM1 ∧ ... ∧ dxMk
)

=

√
−g

(d− k)!
ε M1...Mk
Mk+1...Md

AM1...Mk
dxMk+1 ∧ ... ∧ dxMd . (6.27)

d is the number of space-time dimensions.

Putting everything together, we can rewrite the linearized Bianchi identity in index

notation:

− 1

3!

(
∇M∇Mc[PQR] − 3∇M∇[P |cM |QR]

)
+ 12

(
∇MbM [P ḞQR] +∇M ḞM [RbPQ]

)
+

− 4
(

3∇MḢM [PQcR] −∇McMḢ[PQR]

)
+ 35

√
−g
3!

ε MNTUV ZS
PQR Ḣ[MNT∇UcV ZS] = 0 . (6.28)

We want to simplify the equation by imposing the gauge choice: ∇mcmNP = ∇mcm =

∇mbmN = 0 (where small latin letters refer to internal indices). In order to do so, we

have to exchange the covariant derivatives in the second term of this equation although

this will introduce terms proportional to the Riemann tensor. Here is how the mentioned

term can be rewritten:

ḡMS∇S∇[P |cM |QR] = ḡMS
(
∇[P∇Sc|M |QR] +

[
∇S,∇[P

]
c|M |QR]

)
=

= ḡMS
(
∇[P∇Sc|M |QR] − ḡDF

(
R̄FMS[P |cD|QR] + R̄F [Q|S|P |cMD|R] + R̄F [R|S|P c|M |Q]D

))
=

= ḡMS
(
∇[P∇Sc|M |QR] − ḡDF

(
R̄FMS[P cD|QR] + 2R̄F [Q|S|P |cMD|R]

))
=

= ∇[P∇Mc|M |QR] −
(
−R̄ D

[P cD|QR] + 2R̄D M
[Q |P |cMD|R]

)
. (6.29)

Rewriting R̄D M
[Q |P | using the first Bianchi identity for the Riemann tensor: RM

[NPQ].

R̄D M
[Q P cR]MD =

(
−R̄DM

[PQ − R̄D M
[PQ

)
cR]MD = ,
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=
(
−R̄DM

[PQ − R̄D M
[Q P

)
cR]MD . (6.30)

Finally, we get:

2R̄D M
[Q P cR]MD = −R̄DM

[PQcR]MD . (6.31)

The commutator is then:

ḡMS∇S∇[P |cM |QR] = ∇[P∇Mc|M |QR] −
(
−R̄ D

[P cD|QR] + R̄DM
[PQcR]DM

)
. (6.32)

We can now plug in equation (6.28) the expression we have just found and we get:

− 1

3!

[
∇M∇Mc[PQR] − 3∇[P∇Mc|M |QR] + 3

(
−R̄ D

[P cD|QR] + R̄DM[PQcR]DM

)]
+ 12

(
∇MbM [P ḞQR] +

+∇M ḞM [RbPQ]

)
−4
(

3∇M ḢM [PQcR] −∇McM Ḣ[PQR]

)
+35

√
−g
3!

ε MNTUV ZS
PQR Ḣ[MNT∇UcV ZS] = 0 .

(6.33)

The equation has 3 free indices that we can choose to be either in AdS7 or M3. Once

we specify the various possibilities for the contracted indices we can also impose our gauge

condition and find the final expression of the equation.

3 indices in AdS7 , 0 indices in M3

In this case all free indices belong to AdS7 and the linearized Bianchi identity for the

6-form becomes:

− 1

3!

[
∇M∇Mc[µνρ] − 3∇[µ∇Mc|M |νρ] + 3

(
−R̄ D

[µ cD|νρ] + R̄DM [µνcρ]DM

)]
+ 12

(
∇MbM [µḞνρ] +

+∇M ḞM [ρbµν]

)
−4
(

3∇MḢM [µνcρ] −∇McMḢ[µνρ]

)
+35

√
−g
3!

ε MNTUV ZS
µνρ Ḣ[MNT∇UcV ZS] = 0 .

(6.34)

We can rewrite the equation expliciting the metric tensor. In this way, we will be able

to write the different terms that arise thanks to the form of the metric tensor. In fact,
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our metric is a warped-product type metric, which means that it is a cross product of the

internal and external metric weighted by a warping factor. In our case the metric is:

ĝMN (x, y) = e2A(y)gµν (x)⊕ gmn (y) . (6.35)

Or equivalently, we can rescale the metric so that we separate terms with x-dependence

(x is used for space-time coordinates) from terms with y-dependence (y is used for internal

coordinates):

ḡMN = e−2A(y)ĝMN = gµν (x)⊕ e−2A(y)gmn (y) . (6.36)

Equation (6.34) becomes:

− 1

3!
ḡMS

(
∇S∇Mc[µνρ] − 3∇[µ∇Sc|M |νρ] + 3ḡDF

(
−R̄M [µ|SF cD|νρ] + R̄FS[µνcρ]DM

))
+

+12ḡMS
(
∇SbM [µḞνρ] +∇SḞM [ρbµν]

)
− 4ḡMS

(
3∇SḢM [µνcρ] −∇ScMḢ[µνρ]

)
+

+ 35

√
−g
3!

(
ḡAM ḡBN ḡCT ḡDU ḡEV ḡFZ ḡGS

)
εµνρABCDEFGḢ[MNT∇UcV ZS] = 0 . (6.37)

We will now specify internal and external indices. Latin letters {m,n, p, ...} will be

used for internal indices while greek letters {µ, ν, ρ, ...} for external ones.

− 1

3!
gτσ

[
∇σ∇τ c[µνρ] − 3∇[µ|∇σc|τ |νρ] + 3gϕχ

(
−R̄τ [µ|σϕcχ|νρ] + R̄χσ[µνcρ]ϕτ

)]
+

− 1

3!
e2A(y)gms

(
∇s∇mc[µνρ] − 3∇[µ∇sc|m|νρ]

)
+

3!4!

7!
35

√
−g
3!

e−6A(y)ε mntστϕχ
µνρ Ḣ[mnt]∇[σcτϕχ] = 0 .

(6.38)

We can now use the gauge choice ∇mcmNP = ∇mcm = ∇mbmN = 0 .

− 1

3!

[
∇τ∇τc[µνρ] − 3∇[µ|∇τcτ |νρ] + 3

(
−R̄ χ

[µ| cχ|νρ] + R̄χτ
[µνcρ]χτ

)]
+

− 1

3!
e2A(y)∇m∇mc[µνρ] +

√
−g
3!

e6A(y)ε mntστϕχ
µνρ Ḣ[mnt]∇[σcτϕχ] = 0 . (6.39)
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2 indices in AdS7 , 1 index in M3

Specifying the possible values of the indices and neglecting the null terms from the equa-

tion (6.33) we get:

∇τ∇τc[nνρ] + e2A(y)∇m∇mc[nνρ] − 3∇[n∇τc|τ |νρ]+

+ 3e4A(y)
(
−R̄ m

[n| cm|νρ] + R̄mq
[nνcρ]mq

)
+ 4e2A(y)∇mḞmnb[νρ] = 0 . (6.40)

1 index in AdS7 , 2 indices in M3

Again, starting from (6.33) :

− 1

3!

[
∇M∇Mc[nqρ] − 3∇[n∇Mc|M |qρ] + 3

(
−R̄ D

[n| cD|qρ] + R̄DM
[nqcρ]DM

)]
+

+ 12

(
1

3
∇MbMρḞnq +

2

3
e2A(y)∇mḞm[nbq]ρ

)
− 4e2A(y)

(
3

3!
∇mḢmnqcρ

)
= 0 (6.41)

.

Which becomes:

− 1

3!

[
∇τ∇τ c[nqρ] + e2A(y)∇m∇mc[nqρ] − 3∇[n∇τ c|τ |qρ] + 3e4A(y)

(
−R̄ m

[n| cm|qρ] + R̄ms[nqcρ]ms

)]
+

+ 12

(
1

3
∇τ bτρḞnq +

2

3
e2A(y)∇mḞm[nbq]ρ

)
− 4e2A(y)

(
3

3!
∇mḢmnqcρ

)
= 0 . (6.42)

0 indices in AdS7 , 3 indices in M3

At last, we consider equation (6.33) where all free indices are internal:

− 1

3!

[
∇M∇Mc[nqr] − 3∇[n∇Mc|M |qr] + 3

(
−R̄ D

[n| cD|qr] + R̄DM [nqcr]DM

)]
+
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+12
(
∇MbM [nḞqr] +∇M ḞM [rbnq]

)
− 4

(
3∇MḢM [nqcr] −∇McMḢ[nqr]

)
= 0 . (6.43)

Writing out all possibilities we have:

− 1

3!

(
∇τ∇τ c[nqr] + e2A(y)∇m∇mc[nqr] − 3∇[n∇τ c|τ |qr] + 3e4A(y)

(
−R̄ d

[n| cd|qr] + R̄dm[qncr]dm

))
+

+12
(
∇τ bτ [nḞqr] + e2A(y)∇mḞm[rbnq]

)
− 4

(
3e2A(y)∇mḢm[nqcr] −∇τ cτ Ḣ[nqr]

)
= 0 . (6.44)

6.1.4 8-Form field strength

In this section we are interested in finding the linearized Bianchi identities of the 8-form

F8. As in the previous case, we are going to consider the dual forms corresponding to F6

and F8, namely F4 and F2, and the dualized equation.

The linearized Bianchi is:

df8 + Ḣ ∧ f6 = 0 . (6.45)

Now we consider the dual forms: f8 = ∗f2 and f6 = − ∗ f4 .

The equation becomes:

d ∗ f2 − Ḣ ∧ ∗f4 = 0 . (6.46)

Dualizing it we get:

d†f2 − 6!4!Ḣxf4 = 0 , (6.47)

where:

∗
(
Ḣ ∧ ∗f4

)
= εABCRSTUV ZXḢ

ABCεMNPQRSTUV ZfMNPQ =
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= 6!4!δMA δ
N
B δ

P
Cδ

Q
XḢ

ABCfMNPQ = 6!4!ḢMNP fMNPX = 6!4!Ḣxf4 .

Substituting the expressions for f2 and f4 into (6.47) we have:

d†dc1 − d†
(
bḞ0

)
− 6!4!Ḣx

(
dc3 − b ∧ Ḟ2 + Ḣ ∧ c1

)
= 0 . (6.48)

At this point we would like to switch to index notation. Let’s see how each term is written:

d†dc1 = ∇M∇[McQ]dx
Q =

1

2

(
∇M∇McQ −∇M∇QcM

)
dxQ , (6.49)

d†
(
bḞ0

)
= 2∇Mb[MQ]Ḟ0dx

Q , (6.50)

Ḣxdc3 = ḢMNP∇[McNPQ]dx
Q = ḢMNP

(
1

4
∇Mc[NPQ] −

3

4
∇[Nc|M |PQ]

)
dxQ , (6.51)

Ḣx
(
b ∧ Ḟ2

)
=

4!

2!2!
ḢMNP

(
b[MN ḞPQ]

)
dxQ = 6ḢMNP

(
b[MN ḞPQ]

)
dxQ = 6ḢMNP

(
1

2
b[MN ḞP ]Q +

1

2
bQ[M ḞNP ]

)
dxQ ,

(6.52)

Ḣx
(
Ḣ ∧ c1

)
=

4!

3!
ḢMNP

(
Ḣ[MNP cQ]

)
dxQ = 4ḢMNP

(
1

4
Ḣ[MNP ]cQ −

3

4
ḢQ[MNcP ]

)
dxQ .

(6.53)

Substituting the terms written in index notation in the linearized equation found in (6.48)

we get:

1

2

(
∇M∇McQ −∇M∇QcM

)
− 2∇Mb[MQ]Ḟ0 − 6!4!ḢMNP

[(
1

4
∇Mc[NPQ] −

3

4
∇[Nc|M |PQ]

)
+
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−3
(
b[MN ḞP ]Q + bQ[M ḞNP ]

)
+
(
Ḣ[MNP ]cQ − 3ḢQ[MNcP ]

)]
= 0 . (6.54)

We can rewrite the equation in such a way that we are able to use the gauge condition:

∇mcm = ∇mcmNP = ∇mbmN = 0 .

In order to do so we have to do the following computation:

ḡMS∇S∇QcM = ḡMS∇Q∇ScM + ḡMS [∇S,∇Q] cM =

= ḡMS∇Q∇ScM + ḡMSR D
SQM cD = ḡMS∇Q∇ScM + ḡMS ḡDFRSQMF cD . (6.55)

Rewriting equation (6.54) with this modification we obtain:

1

2

(
∇M∇McQ −∇Q∇McM −R D

Q cD
)
− 2∇Mb[MQ]Ḟ0+

−6!4!ḢMNP

[(
1

4
∇Mc[NPQ] −

3

4
∇[Nc|M |PQ]

)
− 3

(
b[MN ḞP ]Q + bQ[M ḞNP ]

)
+
(
Ḣ[MNP ]cQ − 3ḢQ[MNcP ]

)]
= 0 .

(6.56)

This is the final expression for the linearized Bianchi identity, we only have to evaluate

it for the various possible values of the indices. Here we only have one free index which

can either be an internal or an external one. Let’s see what comes out from these subcases.

1 index in Ads7, 0 indices in M3

We start from equation (6.56) with an external free index:

1

2

(
∇M∇Mcµ −∇µ∇McM −R D

µ cD
)
− 2∇Mb[Mµ]Ḟ0+

− 6!4!ḢMNP

[(
1

4
∇Mc[NPµ] −

3

4
∇[Nc|M |Pµ]

)
− 3bµ[M ḞNP ] + Ḣ[MNP ]cµ

]
= 0 . (6.57)

Evaluating the contractions:
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1

2

(
∇τ∇τ cµ + e−2A(y)∇m∇mcµ −∇µ∇τ cτ −R τ

µ cτ

)
− 2∇τ b[τµ]Ḟ0+

− 6!4!e6A(y)Ḣmnp

[(
1

4
∇mc[npµ] −

3

4
∇[nc|m|pµ]

)
− 3bµ[mḞnp] + Ḣ[mnp]cµ

]
= 0 . (6.58)

If we now introduce the definition: Ḣmnp = hεmnp ,the equation becomes:

1

2

(
∇τ∇τ cµ + e2A(y)∇m∇mcµ −∇µ∇τ cτ −R τ

µ cτ

)
− 2∇τ b[τµ]Ḟ0+

− 6!4!e6A(y)h

[
εmnp

(
1

4
∇mc[npµ] −

3

4
∇[nc|m|pµ]

)
− 3εmnpbµ[mḞnp] + 3!hcµ

]
= 0 . (6.59)

0 indices in Ads7, 1 index in M3

Now we consider equation (6.56) where the free index is an internal one:

1

2

(
∇M∇Mcq −∇q∇McM −R D

q cD
)
− 2∇Mb[Mq]Ḟ0+

−6!4!ḢMNP

[(
1

4
∇Mc[NPq] −

3

4
∇[Nc|M |Pq]

)
− 3

(
b[MN ḞP ]q + bq[M ḞNP ]

)
+
(
Ḣ[MNP ]cq − 3Ḣq[MNcP ]

)]
= 0 ,

(6.60)

1

2

(
∇τ∇τ cq + e2A(y)∇m∇mcq −∇q∇τ cτ − e2A(y)R m

q cm

)
− 2∇τ b[τq]Ḟ0+

−6!4!e6A(y)Ḣmnp

[(
1

4
∇mc[npq] −

3

4
∇[nc|m|pq]

)
− 3

(
b[mnḞp]q + bq[mḞnp]

)
+
(
Ḣ[mnp]cq − 3Ḣq[mncp]

)]
= 0 .

(6.61)

Using: Ḣmnp = hεmnp ;

1

2

(
∇τ∇τ cq + e2A(y)∇m∇mcq −∇q∇τ cτ − e2A(y)R m

q cm

)
− 2∇τ b[τq]Ḟ0+
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−6!4!e6A(y)h

[
εmnp

(
1

4
∇mc[npq] −

3

4
∇[nc|m|pq]

)
− 3εmnp

(
b[mnḞp]q + bq[mḞnp]

)
+ (3!hcq − 6hcq)

]
= 0 ,

(6.62)

1

2

(
∇τ∇τ cq + e2A(y)∇m∇mcq −∇q∇τ cτ − e2A(y)R m

q cm

)
− 2∇τ b[τq]Ḟ0+

− 6!4!e6A(y)hεmnp
[(

1

4
∇mc[npq] −

3

4
∇[nc|m|pq]

)
− 3

(
b[mnḞp]q + bq[mḞnp]

)]
= 0 . (6.63)

6.1.5 Summary of Bianchi identities

Here we present a summary of the linearized equations we have found from the Bianchi

identities of the 6 and 8 form.

6-Form

3 AdS7 , 0 M3

∇τ∇τc[µνρ] − 3∇[µ|∇τcτ |νρ] + 3
(
−R̄ χ

[µ| cχ|νρ] + R̄χτ
[µνcρ]χτ

)
+

e2A(y)∇m∇mc[µνρ] −
√
−ge6A(y)ε mntστϕχ

µνρ Ḣ[mnt]∇[σcτϕχ] = 0 . (6.64)

2 AdS7 , 1 M3

∇τ∇τc[nνρ] + e2A(y)∇m∇mc[nνρ] − 3∇[n∇τc|τ |νρ]+

+ 3e4A(y)
(
−R̄ m

[n| cm|νρ] + R̄mq
[nνcρ]mq

)
+ 4e2A(y)∇mḞmnb[νρ] = 0 . (6.65)
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1 AdS7 , 2 M3

∇τ∇τ c[nqρ] + e2A(y)∇m∇mc[nqρ] − 3∇[n∇τ c|τ |qρ] + 3e4A(y)
(
−R̄ m

[n| cm|qρ] + R̄ms[nqcρ]ms

)
+

− 24
(
∇τ bτρḞnq + 2e2A(y)∇mḞm[nbq]ρ

)
+ 12e2A(y)∇mḢmnqcρ = 0 . (6.66)

0 AdS7 , 3 M3

∇τ∇τ c[nqr] + e2A(y)∇m∇mc[nqr] − 3∇[n∇τ c|τ |qr] + 3e4A(y)
(
−R̄ d

[n| cd|qr] + R̄dm[qncr]dm

)
+

− 72
(
∇τ bτ [nḞqr] + e2A(y)∇mḞm[rbnq]

)
+ 72

(
3e2A(y)∇mḢm[nqcr] −∇τ cτ Ḣ[nqr]

)
= 0 . (6.67)

8-Form

1 AdS7 , 0 M3

∇τ∇τcµ + e2A(y)∇m∇mcµ −∇µ∇τcτ −R τ
µ cτ − 4∇τb[τµ]Ḟ0+

− 6!4!e6A(y)h

[
εmnp

(
1

2
∇mc[npµ] −

3

2
∇[nc|m|pµ]

)
− 6εmnpbµ[mḞnp] + 12hcµ

]
= 0 . (6.68)
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0 AdS7 , 1 M3

∇τ∇τcq + e2A(y)∇m∇mcq −∇q∇τcτ − e2A(y)R m
q cm − 4∇τb[τq]Ḟ0+

− 6!4!e6A(y)hεmnp
[(

1

2
∇mc[npq] −

3

2
∇[nc|m|pq]

)
− 6

(
b[mnḞp]q + bq[mḞnp]

)]
= 0 . (6.69)

6.2 Dilaton equation

Now we turn to the task of linearizing equation (3.32) which describes the dilaton φ . We

quote here the starting equation again:

R̄ + 4∇2Φ− 4 (∇Φ)2 − 1

2
|H|2 = 0 . (6.70)

As before, we are going to expand the fields to linear order in the perturbations. They

will take the following form

R̄ = ˙̄R + δR̄ , (6.71)

Φ = Φ̇ + φ , (6.72)

H = Ḣ + db . (6.73)

Where Ṙ and δR are obtained from the background value and the perturbation of the

corresponding Riemann tensor.

The linearized equation for the dilaton Φ is then:

˙̄R + δR̄ + 4∇2Φ̇ + 4∇2φ− 4
(
∇Φ̇
)2

− 4 (∇φ)2 − 1

2
|Ḣ|2 − |Ḣ · db| = 0 . (6.74)

The equation of motion for the background fields is:

˙̄R + 4∇2Φ̇− 4
(
∇Φ̇
)2

− 1

2
|Ḣ|2 = 0 . (6.75)
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We can use it to simplify the expression of (6.74), which becomes:

δR̄ + 4∇2φ− 4 (∇φ)2 − |Ḣ · db| = 0 . (6.76)

Let’s look explicitly to the expression of each term in index notation. We start by

investigating the expression of the curvature scalar R̄:

δR̄ = δR̄MN ḡ
MN , (6.77)

δR̄MN =
1

2

(
R̂PMh

P
N − R̂PNKMhKP + R̂PMKNh

K
P

)
− 1

2
∇̂K∇̂KhMN , (6.78)

R̂PM = R̄PM − (d− 2)
(
∇P∇MA+∇PA∇MA− ĝPM ĝRS∇RA∇SA

)
− 2ĝPM ĝ

RS∇R∇SA ,

(6.79)

R̂PNKM = R̄PNKM+2δP[N∇K]∇MA−2ĝPRĝM [N∇K∇RA−2∇[NAδ
P
K]∇MA+2∇[NAĝK]M ĝ

PR∇RA+2ĝM [N δ
P
K]ĝ

RS∇RA∇SA .

(6.80)

So, putting everything together we get:

δR̄MN =
1

2

{[
R̄PM − (d− 2)

(
∇P∇MA+∇PA∇MA− ĝPM ĝRS∇RA∇SA

)
− 2ĝPM ĝ

RS∇R∇SA
]
hPN+

−
[
R̄PNKM + 2δP[N∇K]∇MA− 2ĝPRĝM [N∇K∇RA− 2∇[NAδ

P
K]∇MA+ 2∇[NAĝK]M ĝ

PR∇RA+ 2ĝM [N δ
P
K]ĝ

RS∇RA∇SA
]
hKP +

+
[
R̄PMKN + 2δP[M∇K]∇NA− 2ĝPRĝN [M∇K∇RA− 2∇[MAδ

P
K]∇NA+ 2∇[MAĝK]N ĝ

PR∇RA+ 2ĝN [M δ
P
K]ĝ

RS∇RA∇SA
]
hKP

}
+

−
1

2
∇̂K∇̂KhMN . (6.81)

The other terms, written in tensor notation, are:
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∇2φ = ḡMN∇M∇Nφ (6.82)

(∇φ)2 = ḡMN∇Mφ∇Nφ (6.83)

Ḣ · db = ḡMN ḡPQḡRSḢ [MPR]2∇[NbQS] (6.84)

Now, the linearized dilaton equation (6.76) becomes:

{
1

2

{[
R̄PM − (d− 2)

(
∇P∇MA+∇PA∇MA− ĝPM ĝRS∇RA∇SA

)
− 2ĝPM ĝ

RS∇R∇SA
]
hPN+

−
[
R̄PNKM + 2δP[N∇K]∇MA− 2ĝPRĝM [N∇K∇RA− 2∇[NAδ

P
K]∇MA+ 2∇[NAĝK]M ĝ

PR∇RA+ 2ĝM [N δ
P
K]ĝ

RS∇RA∇SA
]
hKP +

+
[
R̄PNKM + 2δP[M∇K]∇NA− 2ĝPRĝN [M∇K∇RA− 2∇[MAδ

P
K]∇NA+ 2∇[MAĝK]N ĝ

PR∇RA+ 2ĝN [M δ
P
K]ĝ

RS∇RA∇SA
]
hKP

}
+

−
1

2
∇̂K∇̂KhMN

}
ḡMN + 4ḡMN∇M∇Nφ− 8ḡMN∇Mφ∇N Φ̇− 2ḡMN ḡPQḡRSḢ[MPR]∇[N bQS] = 0 . (6.85)

6.3 Einstein equation

In this subsection we look at the Einstein equation, we quote it here again:

e−2Φ

(
R̄MN + 2∇M∇NΦ− 1

2
H PQ
M HNPQ

)
− 1

4

∑
p≥2

|Fp|2MN = 0 , (6.86)

where: |Fp|2MN = 1
(p−1)!

F
Q1...Qp−1

M FNQ1...Qp−1 .

To linearize the equation we expand the fields to linear order in the perturbations:

R̄MN = ˙̄RMN + δR̄MN , (6.87)

Φ = Φ̇ + φ , (6.88)

H = Ḣ + db , (6.89)
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Fp = Ḟp + fp . (6.90)

The linearized equation is:

e−2Φ̇ (1− 2φ)

[
˙̄RMN + δR̄MN + 2∇M∇N Φ̇ + 2∇M∇Nφ−

1

2
ḡPRḡQS

(
ḢMRSḢNPQ +∇[MbRS]ḢNPQ + ḢMRS∇[NbPQ]

)]
+

− 1

4

∑
p≥2

(
|Ḟp|2MN + 2|Ḟp · fp|MN

)
= 0 . (6.91)

For the background fields we have:

e−2Φ̇

[
˙̄RMN + 2∇M∇N Φ̇− 1

2
ḡPRḡQS

(
ḢMRSḢNPQ

)]
− 1

4

∑
p≥2

|Ḟp|2MN = 0 . (6.92)

The linearized Einstein equation in tensor notation, where we have used the identity

for the background fields is:

e−2Φ̇

[
δR̄MN + 2∇M∇Nφ−

1

2
ḡPRḡQS

(
∇[M bRS]ḢNPQ + ḢMRS∇[N bPQ]

)]
+

−2φe−2Φ̇

[
˙̄RMN + 2∇M∇N Φ̇−

1

2
ḡPRḡQS

(
ḢMRSḢNPQ

)]
+

−
1

4

[
ḡQP

(
ḞMQḞNP

)
+ ḡQP

(
ḞMQfNP

)
+ ḡQP

(
fMQḞNP

)
+

1

3!
ḡQP ḡRT ḡSU

(
ḞMQRS ḞNPTU

)
+

+
1

3!
ḡQP ḡRT ḡSU

(
ḞMQRSfNPTU

)
+

1

3!
ḡQP ḡRT ḡSU

(
fMQRS ḞNPTU

)
+

+
1

5!
ḡQP ḡRT ḡSU ḡVX ḡZY

(
ḞMQRSV Z ḞNPTUXY

)
+

1

5!
ḡQP ḡRT ḡSU ḡVX ḡZY

(
fMQRSV Z ḞNPTUXY

)
+

+
1

5!
ḡQP ḡRT ḡSU ḡVX ḡZY

(
ḞMQRSV ZfNPTUXY

)
+

1

7!
ḡQP ḡRT ḡSU ḡVX ḡZY ḡAF ḡBG

(
ḞMQRSV ZABḞNPTUXY FG

)
+

+
1

7!
ḡQP ḡRT ḡSU ḡVX ḡZY ḡAF ḡBG

(
ḞMQRSV ZABfNPTUXY FG

)
+

1

7!
ḡQP ḡRT ḡSU ḡVX ḡZY ḡAF ḡBG

(
fMQRSV ZABḞNPTUXY FG

)
+

+
1

9!
ḡQP ḡRT ḡSU ḡVX ḡZY ḡAF ḡBGḡCH ḡDE

(
ḞMQRSV ZABCDḞNPTUXY FGHE

)
+

+
1

9!
ḡQP ḡRT ḡSU ḡVX ḡZY ḡAF ḡBGḡCH ḡDE

(
ḞMQRSV ZABCDfNPTUXY FGHE

)
+

+
1

9!
ḡQP ḡRT ḡSU ḡVX ḡZY ḡAF ḡBGḡCH ḡDE

(
fMQRSV ZABCDḞNPTUXY FGHE

)]
= 0 . (6.93)

64



7 Conclusions

We set out to linearize the equations of motion of type IIA supergravity on a AdS7 ×
M3 background and we discovered most of them. We started from IIA supergravity

equations of motion, we substituted the expressions of the fields expanded to linear order

in the fluctuations around their background values and eventually we found the linearized

equations of motion by keeping only terms up to first order. At the end, we succesfully

computed the linearized Bianchi identities, summarized in 6.1.5, and we have put the

basis for the computations of the dilaton and Einstein linearized equations in 6.2 and 6.3

respectively. The equations we have obtained have several traits in common with the ones

found in [8] and [9], which describe cases similar to the one we have treated; this gives us

strong hints that we are heading in the right direction.
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